Math, asked by babariyals123, 1 month ago

Find the coordinates of the point which divides the line segment joining points A (-3,4)

and B (13,12) in the ratio 5:3​

Answers

Answered by sunitadevisd1376952
0

Answer:

nothing is impossible to get 6

Step-by-step explanation:

h sir please

Answered by ItzWhiteStorm
40

Solution:-

  • Here,The coordinates of the point which divides the line segment joining A (- 3,4) and B (13,12) in the ratio 5:3.Let the us apply the section formulae of internally where m + n ≠ 0.

 \\  \large\underline{\bigstar \: \bf{Formula \:  \bigstar}} \\   \\    \sf{\overline{AB} =   \bigg(\frac{mx_2+nx_1}{m + n}  \frac{,my_2+ny_1}{,m + n}  \bigg)} \\  \\

Let A(x1,y1) = (-3,4) and B(x2,y2) = (13,12).

Given ratio m : n = 5:3

\\ \\

Putting the values on formula,

 \\  \\ \dashrightarrow \sf{ \bigg(  \frac{(5  \times 13)  + (3  \times ( - 3))}{5 + 3}, \frac{(5 \times 12) +(3  \times 4) }{5 + 3}  \bigg)} \\   \\ \dashrightarrow \sf{ \bigg( \frac{65 + ( - 9)}{8} , \frac{60 + 12}{8}  \bigg)} \\  \\ \dashrightarrow \sf{ \bigg( \frac{56}{8},  \frac{72}{8}  \bigg)} \\  \\ \dashrightarrow \sf{7,9}\\ \\

Hence,

  • The coordinate points are (7,9).

_______________________________

Similar questions