Math, asked by RishilGundu, 3 months ago

Find the coordinates of the point which divides the line segment joining (-1, 3) and (4, -7) internally in the ratio 3:4.

Answers

Answered by sakshi1158
0

Answer:

the coordinates of the point which divides the line segments joining the points (1,-2,3)and (3,4,-5) in the ratio 2:3 (1) internally ,and (2) externally

Answered by Anonymous
86

Answer:

{ \large{ \pmb{ \sf{★Given... }}}}

Points: A(-1, 3) , B(4, -7)

Ratio : 3 : 4

{ \large { \pmb{ \sf{★ To \:  Find... }}}}

Coordinates of the points..?

{ \large{ \pmb{ \sf{★ Formula  \: Used... }}}}

{ \sf{p(x, y) =  \bigg( \frac{m x_{2} + n x_{1}}{m + n}  ,  \frac{my_{2} + ny_{1}}{m + n} \bigg) }} \\

{ \large{ \pmb { \sf{★ Solution... }}}}

From points,

  • { \sf{ x_{1} =  - 1}}
  •  \: { \sf{ x_{2} = 4}}
  •  \: { \sf{ y_{1} = 3}}
  •  \: { \sf{ y_{2} =  - 7}}

And, m : n = 3 : 4

Substitute these values in formula,

 \implies{ \sf{ \bigg( \frac{3 (4) + 4 ( - 1)}{3 + 4}  ,  \frac{3( - 7) + 4(3)}{3 + 4} \bigg) }} \\

 \: \implies{ \sf{ \bigg( \frac{12 - 4}{7}  ,  \frac{ - 21 +12}{7} \bigg) }} \\

 \implies{ \sf{ \bigg( \frac{8}{7}  ,  \frac{  - 9}{7} \bigg) }} \\

{ \large{ \pmb{ \sf{★ Final  \: Answer... }}}}

 \therefore{ \bf{ p(x, y) = \bigg( \frac{8}{7}  ,  \frac{  - 9}{7} \bigg) }} \\

Similar questions