Math, asked by sk3288943, 9 months ago

Find the coordinates

of the points of trisection

(i.e., points dividing the

line segment, in three

equal parts) of the line

segment joining the

points (2, -2) and

(-7, 4). ​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\textsf{Points are (2,-2) and (-7,4)}

\underline{\textsf{To find:}}

\textsf{Points of trisection of line segment joining}

\textsf{given points}

\underline{\textsf{Solution:}}

\textsf{Let the given points be A(2,-2) and B(-7,4)}

\textsf{Let P and Q be the points of trisection}

\textsf{Then P and Q divides AB internally in the ratio 1:2 and 2:1 respectively}

\textsf{By Section formula, the coordinates of P is}

\mathsf{(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n})}

\mathsf{(\dfrac{1(-7)+2(2)}{1+2},\dfrac{1(4)+2(-2)}{1+2})}

\mathsf{(\dfrac{-7+4}{3},\dfrac{4-4}{3})}

\mathsf{(\dfrac{-3}{3},\dfrac{0}{3})}

\mathsf{(-1,0)}

\textsf{Also, the coordinates of Q is}

\mathsf{(\dfrac{2(-7)+1(2)}{2+1},\dfrac{2(4)+1(-2)}{2+1})}

\mathsf{(\dfrac{-14+2}{3},\dfrac{8-2}{3})}

\mathsf{(\dfrac{-12}{3},\dfrac{6}{3})}

\mathsf{(-4,2)}

\underline{\textsf{Answer:}}

\textsf{The points of trisection are (-3,0) and (-4,2)}

Find more:

The line segment joining the points (3,-1) and (-6,5) is trisected. find the coordinate of the point of trisection.

https://brainly.in/question/8416219

Find the point of trisection of the line segment AB, where A (-6, 11) and B (10, -3).

https://brainly.in/question/20696480

Similar questions