Math, asked by sk3288943, 10 months ago

Find the coordinates

of the points of trisection

(i.e., points dividing the

line segment, in three

equal parts) of the line

segment joining the

points (2, -2) and

(-7, 4). ​

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\textsf{Points are (2,-2) and (-7,4)}

\underline{\textsf{To find:}}

\textsf{Points of trisection of line segment joining}

\textsf{given points}

\underline{\textsf{Solution:}}

\textsf{Let the given points be A(2,-2) and B(-7,4)}

\textsf{Let P and Q be the points of trisection}

\textsf{Then P and Q divides AB internally in the ratio 1:2 and 2:1 respectively}

\textsf{By Section formula, the coordinates of P is}

\mathsf{(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n})}

\mathsf{(\dfrac{1(-7)+2(2)}{1+2},\dfrac{1(4)+2(-2)}{1+2})}

\mathsf{(\dfrac{-7+4}{3},\dfrac{4-4}{3})}

\mathsf{(\dfrac{-3}{3},\dfrac{0}{3})}

\mathsf{(-1,0)}

\textsf{Also, the coordinates of Q is}

\mathsf{(\dfrac{2(-7)+1(2)}{2+1},\dfrac{2(4)+1(-2)}{2+1})}

\mathsf{(\dfrac{-14+2}{3},\dfrac{8-2}{3})}

\mathsf{(\dfrac{-12}{3},\dfrac{6}{3})}

\mathsf{(-4,2)}

\underline{\textsf{Answer:}}

\textsf{The points of trisection are (-3,0) and (-4,2)}

Find more:

The line segment joining the points (3,-1) and (-6,5) is trisected. find the coordinate of the point of trisection.

https://brainly.in/question/8416219

Find the point of trisection of the line segment AB, where A (-6, 11) and B (10, -3).

https://brainly.in/question/20696480

Similar questions