Math, asked by cmanyam2, 5 months ago

Find the coordinates of the points of trisection of the line segment joining the points (1, -2) and (-3, 4).​

Answers

Answered by MaIeficent
20

Step-by-step explanation:

Concept used:-

The coordinates of the point P( x , y) divides the line segment joining the points A( x₁ , y₁) and B(x₂ , y₂) internally in the ratio  m₁ : m₂ are

\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\boxed{ \sf \:  \bigg(\frac{ m_{1} x_{2} +  m_{2} x_{1}}{m_{1} + m_{2}}  \: , \:  \frac{ m_{1} y_{2} +  m_{2} y_{1}}{m_{1} + m_{2}}\bigg)}

Solution:- ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀ ⠀

Let P and Q be the points of trisection of the line joining the points (1, -2) and (-3, 4).

Then, AP = PQ = QB

As, P and Q are the points of trisection.

P divides AB internally in the ratio 1 : 2 and

Here, m₁ = 1 and m₂ = 2

• x₁ = 1 , x₂ = -3 , y₁ = -2 and y₂ = 4

By applying section formula

\sf The \: coordinates \: of \: P =  \:  \bigg(\dfrac{1( - 3) + 2(1)}{1 + 2}  \: , \:  \dfrac{ 1(4) + 2( - 2)}{1 + 2}\bigg)

\sf =  \: \bigg( \dfrac{ - 3 + 2}{3}  \: , \:  \dfrac{4 - 4}{3}\bigg)

\sf =  \:  \dfrac{ - 1}{3}  \: , \: 0

\sf  \therefore \underline{\:\:{\underline {\: The \: coorinates \: of \: P\: are \:  \bigg(\dfrac{ - 1}{3}  \: , \: 0 \bigg)}\:}\:\:}

Now, Q divides AB internally in the ratio 2 : 1.

Here, m₁ = 2 and m₂ = 1

• x₁ = 1 , x₂ = -3 , y₁ = -2 and y₂ = 4

By applying section formula

\sf The \: coordinates \: of \: Q =  \:  \bigg(\dfrac{2( - 3) + 1(1)}{1 + 2}  \: , \:  \dfrac{ 2(4) + 1( - 2)}{1 + 2}\bigg)

\sf =  \: \bigg( \dfrac{ - 6 + 1}{3}  \: , \:  \dfrac{8- 2}{3}\bigg)

\sf =  \:  \dfrac{ - 5}{3}  \: , \: 2

\sf  \therefore \underline{\:\:{\underline {\: The \: coorinates \: of \: Q\: are \:  \bigg(\dfrac{ - 5}{3}  \: , \: 2 \bigg)}\:}\:\:}

Therefore:-

The coorinates of the points of trisection of the line segment joining the points (1, -2) and (-3 , 4) are are (-1/3 , 0) and (-5/3 , 2)

Answered by ILLUSTRIOUS27
3

What is trisection?

Refer the attachment-In attachment you will see that AC=CD=DC

This means

AC:CD=1:1

CD:DB=1:1

AC:CB=1:2

AD:DB=2:1

What we have to find?

We have to find the coordinates of points C and D

First we find the coordinates of C

Using section formula

\rm(x,y)=(\frac{mx_2+nx_1}{m+n},\frac{my_2+ny_1}{m+n}) \\  \implies \rm C(x,y) = ( \frac{1 \times  - 3 + 2 \times  1}{3} \: , \frac{1 \times 4 + 2 \times - 2 }{3} \\  \implies   \boxed{ \rm C(x,y) =  (\frac{ - 1}{3}  0) }

Now we find the coordinates of D

Using mid point formula

\rm \: (x,y) = ( \frac{x1 + x2}{2}, \frac{y1 + y2}{2}) \\  \rm \implies D(x,y) = ( \frac{ -  \frac{1}{3}   - 3}{2}, \frac{ 0+ 4}{2})  \\ \rm  \boxed {D(x,y)   =  (  \frac{ - 5}{3} ,{2})}

Attachments:
Similar questions