Math, asked by 2001sunitamishra, 6 months ago

find the coordinates of the points of trisection of the line segment joining (4,-1) and-2,-3)​

Answers

Answered by roshandh77
0

Answer:

Step-by-step explanation:

if 13 cos theta = 5 find the value of  cosec theta

Answered by Anonymous
18

G I V E N :

  • Endpoints of a segment are (4,-1) and (-2,-3).

T O F I N D :

  • The points of trisection of the segment.

A N S W E R :

Let the given points be A (4, – 1) and B(- 2, - 3).

Let P and Q be the point of trisection. Therefore, we have :

  • AP = PQ = QB

Trisection means is to divide a line segment into three equal parts. Hence, we can say that P divides AB in the ratio of 1:2 and Q divides in 2:1 .

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

\underline{\boldsymbol{According\: to \:the\: Question\:now :}} \\

\underline{\frak{Thus,\: coordinate \:  of \:   \textsf{\textbf{P}}\:  is \:  given \:  by :}} \\  \\

:\implies\sf P = \Bigg\lgroup \dfrac{mx_2 + nx_1}{m + n}, \dfrac{my_2 + ny_1}{m + n}\Bigg\rgroup \\  \\  \\

:\implies\sf P = \Bigg\lgroup \dfrac{1 \times ( - 2) + 2 \times 4}{1 + 2}, \dfrac{1 \times ( - 3) + 2 \times ( - 1)}{1 + 2}\Bigg\rgroup \\  \\  \\

:\implies\sf P = \Bigg\lgroup \dfrac{ - 2+ 8}{3}, \dfrac{- 3 - 2}{3}\Bigg\rgroup \\  \\  \\

:\implies\sf P = \Bigg\lgroup \dfrac{6}{3}, \dfrac{- 5}{3}\Bigg\rgroup \\  \\  \\

:\implies\sf P = \Bigg\lgroup 2, \dfrac{- 5}{3}\Bigg\rgroup \\  \\  \\

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━

\underline{\frak{Similarly\: the\: coordinate \:  of \:   \textsf{\textbf{Q}}\:  is \:  given \:  by :}} \\  \\

:\implies\sf Q = \Bigg\lgroup \dfrac{2 \times ( - 2) + 1 \times 4}{2 + 1}, \dfrac{2 \times ( - 3) + 1 \times ( - 1)}{2 + 1}\Bigg\rgroup \\  \\  \\

:\implies\sf Q = \Bigg\lgroup \dfrac{ - 4+ 4}{3}, \dfrac{  - 6  - 1}{3}\Bigg\rgroup \\  \\  \\

:\implies\sf Q =  \Bigg\lgroup 0, \dfrac{  - 7}{3}\Bigg\rgroup\\  \\  \\

Therefore, the coordinates of the point of trisection are :

\bullet \:  \:  \underline{ \boxed{ \sf\Bigg\lgroup 2, \dfrac{- 5}{3}\Bigg\rgroup \: and \: \Bigg\lgroup 0, \dfrac{  - 7}{3}\Bigg\rgroup}}

══════════════════════════════════════════════════

Similar questions