Math, asked by kbisen, 3 months ago

Find the coordinates of the points of trisection of the line segment AB with A (2,7)
and B(-4,-8).​

Answers

Answered by mathdude500
11

\underline\blue{\bold{Given \:  Question :-  }}

  • Find the coordinates of the points of trisection of the line segment AB with A (2,7) and B(-4,-8).

─━─━─━─━─━─━─━─━─━─━─━─━─━

\huge \blue{AηsωeR} ✍

{ \boxed {\bf{Given}}}

  • A line segment AB joining the points A (2,7) and B(-4,-8).

{ \boxed {\bf{To Find}}}

  • The point of trisection of line segment AB.

{ \boxed {\bf{Formula  \: used :- }}}

Section Formula

Let us consider a line segment joining the points

\sf \:  ⟼A(x_1,y_1) \:  and  \: B(x_2,y_2)

and Let C (x, y) be any point which divides AB internally in the ratio m: n, then coordinates of C is given by

\bf \:( x, y) = (\dfrac{mx_2  +  nx_1}{m  +  n}  , \dfrac{my_2  +  ny_1}{m  +  n} )

─━─━─━─━─━─━─━─━─━─━─━─━─━

{ \boxed {\bf{Solution}}}

\sf \: Let P  \: and \:  Q \:  be \:  the \:  point  \: of  \: trisection.

\sf \: So \:  that, AP = PQ = QB

\sf \:So, \:  it  \: implies  \: P  \: divides \:  AB  \: in  \: ratio \: 1 : 2

\sf \:and  \: Q  \: divides  \: AB  \: in \:  the \:  ratio  \: 2 : 1.

\begin{gathered}\begin{gathered}\bf Let = \begin{cases} &\sf{Coordinates \: of  \: P  \: be \:  (a, b)} \\ &\sf{Coordinates  \: of  \: Q \:  be  \: (c, d)} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─━

Case :- 1

\bf \:When \:  P  \: divides  \: AB \:  in \:  the  \: ratio \:  1 : 2.

☆ Using section Formula, we get

\bf \:Coordinates  \: of  \: P =

\bf \:( a, b) = (\dfrac{mx_2  +  nx_1}{m  +  n}  , \dfrac{my_2  +  ny_1}{m  +  n} )

☆ where

\sf \: x_1 = 2,y_1 =7 ,x_2= - 4 ,y_2= - 8 ,m = 1,n =2

☆ So,

\bf \:( a, b) =( \dfrac{ - 4 \times 1 + 2 \times 2}{2 + 1} , \dfrac{ - 8 \times 1 + 2 \times 7}{1 + 2} )

\bf \:( a, b) =( \dfrac{0}{3} , \dfrac{6}{3} )

\bf \:( a, b) =( 0, 2)

\bf\implies \:Coordinates \:  of  \: P = ( a, b) =(0 , 2)

─━─━─━─━─━─━─━─━─━─━─━─━─━

Case :- 2

\bf \:When  \: Q \:  divides \:  AB  \: in \:  the  \: ratio \:  2 : 1.

☆ Using Section Formula, we get

\bf \:Coordinates \:  of  \: Q,  \: are

\bf \:( c, d) = (\dfrac{mx_2  +  nx_1}{m  +  n}  , \dfrac{my_2  +  ny_1}{m  +  n} )

☆ where,

\sf \: x_1 = 2,y_1 =7 ,x_2= - 4 ,y_2= - 8 ,m = 2,n =1

☆ So,

\bf \:( c, d) =( \dfrac{ - 4 \times 2 + 1 \times 2}{1 + 2} , \dfrac{ - 8 \times 2 + 1 \times 7}{2 + 1} )

\bf \:( c, d) =( \dfrac{ - 6}{3} , \dfrac{ - 9}{3} )

\bf\implies \:( c, d) = (  - 2,  - 3)

\bf\implies \:Coordinates \:  of  \: Q, ( c, d) = (  - 2,  - 3)

\begin{gathered}\begin{gathered}\bf Hence = \begin{cases} &\sf{Coordinates \: of  \: P  \: be \:  (0, 2)} \\ &\sf{Coordinates  \: of  \: Q \:  be  \: (-2, -3)} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─━

Similar questions