Math, asked by Mister360, 2 months ago

Find the coordinates of the points of trisection of the line segment joining (4, –1) and (–2, –3).

Answers

Answered by saanvigrover2007
20

\large\pmb{\sf{Question : }}

Find the coordinates of the points of trisection of the line segment joining (4, –1) and (–2, –3).

━━━━━━━━━━━━━━━━━━━━━━━━━━

 \large\pmb{\sf{Solution :}}

Let  \sf{P (x_1, y_1) \: and \:  Q (x_2, y_2) }are the points of trisection of the line segment joining the given points i.e., AP = PQ = QB

 \red \bigstar Therefore, point P divides AB internally in the ratio 1:2

 \sf{x_1 =  \frac{1 \times ( - 2) + 2 \times 4}{1 + 2} \: , \: y_1 =  \frac{1 \times ( - 3) + 2 \times ( - 1)}{1 + 2}  } \\

 \sf{x_1 =  \frac{ - 2 + 8}{3}  =  \frac{6}{3}  = 2 \: ,  \: y_1 =  \frac{ - 3 - 2}{3}  =  \frac{ - 5}{3} } \\

   \underline{ \boxed{\sf {\pink{\therefore \: P(x_1,y_1) =  \left(2, \frac{ - 5}{3} \right) }}}} \\

 \red \bigstar Point Q divides AB internally in the ratio 1:2

\sf{x_2 =  \frac{2 \times ( - 2) + 1 \times 4}{2 + 1} \: , \: y_2 =  \frac{2 \times ( - 3) + 1 \times ( - 1)}{2 + 1}  } \\

 \sf{x_2 =  \frac{ - 4 + 4}{3}  = 0 \: ,  \: y_2 =  \frac{ -6 - 1}{3}  =  \frac{ - 7}{3} } \\

   \underline{ \boxed{\sf {\pink{\therefore \: Q(x_2,y_2) =  \left(0, \frac{ - 7}{3} \right) }}}} \\

━━━━━━━━━━━━━━━━━━━━━━━━━━

\pmb{\sf{Note : }}

\rm {: \mapsto Swipe \: towards \: left\: to  \: view \: full \: equation }

\rm {: \mapsto Final \: answers \: are\: highlighted \: with \: pink}

\rm \footnotesize {: \mapsto Thank \: the \: answer\: and \: rate \: it \: if \: was \: helpful}

━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf  \color{azure}\fcolorbox{pink}{black}{  \:    \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: @Saanvigrover2007 \:  \:  \:  \:  \:  \:  \:  \:  \:   \:    \:  \:  \:  \:  \:  \:  \:  \:  \: \: \:  \:}

Attachments:
Answered by ⲎσⲣⲉⲚⲉⲭⳙⲊ
47

Solution :

  • Let us suppose the given points are A (4, -1) and B(-2, -3).

  • Let E and F be the point of trisection. Therefore, we have : AE = EF = FB

  • Points of trisection means two points between the segment which divide the segment in three equal parts.

  • First part divide the segment in 1 : 2 and second part divide the segment in 2 : 1

  • Hence, we can say that E divides AB in the ratio of 1:2 and F divides in 2:1 .Thus coordinates of E is given by

: \implies\sf E= \bigg(\dfrac{mx_2+nx_1}{m + n} ,\dfrac{my_2+ny_1}{m + n}\bigg) \\  \\ :\implies\sf E = \bigg(\dfrac{1 \times ( - 2)+2 \times 4}{1+ 2} ,\dfrac{1 \times ( - 3)+2 \times ( - 1)}{1 + 2}\bigg) \\  \\ : \implies\sf E = \bigg(\dfrac{ - 2+8}{3} ,\dfrac{ -  3 +   (- 2)}{3}\bigg) \\  \\ : \implies\sf E =\bigg(\dfrac{6}{3} ,\dfrac{ -  3  -  2}{3}\bigg) \\  \\ : \implies\sf E =\bigg(\dfrac{6}{3} ,\dfrac{ - 5}{3}\bigg) \\  \\ : \implies\sf E =\bigg(2 ,\dfrac{ - 5}{3}\bigg) \\  \\ Similarly the coordinate of F is given by :\\: \implies\sf F = \bigg(\dfrac{mx_2+nx_1}{m + n} ,\dfrac{my_2+ny_1}{m + n}\bigg) \\  \\ :\implies\sf F= \bigg(\dfrac{2 \times ( - 2)+1 \times 4}{2+ 1} ,\dfrac{2 \times ( - 3)+1 \times ( - 1)}{2 + 1}\bigg) \\  \\ :\implies\sf F= \bigg( \dfrac{ - 4+4}{3} ,\dfrac{ - 6- 1}{3}\bigg) \\  \\ :\implies\sf F= \bigg( \dfrac{ 0}{3} ,\dfrac{ - 7}{3}\bigg) \\  \\ :\implies\sf F= \bigg( 0 ,\dfrac{ - 7}{3}\bigg) \\  \\ Therefore, the coordinates of the point of trisection are (2,-5/3) and (0,-7/3).

Similar questions