Find the Coordinates of the points of trisection of the line segment joining the points A ( -5,6) and B(4,-3) .
Answers
Answered by
25
Let P and Q be the points of trisection of AB.
Then , P divides AB in the ratio 1:2.
So , the Coordinates of P are :
P ( 1 × 4 + 2 × (-5) / 1 + 2 , 1 × (-3) + 2 × 6 / 1 + 2 ) , i.e , P (-2 , 3 ).
Also, Q divides AB in the ratio 2 : 1.
So , the Coordinates of Q are
Q ( 2 × 4 + 1 × (-5 ) / 2 + 1 , 2 × (-3) + 1 × 6 / 2 + 1 ) , i.e , Q ( 1 , 0).
Hence,
The points of trisection of AB are P ( -2 , 3 ) and Q ( 1 , 0).
Then , P divides AB in the ratio 1:2.
So , the Coordinates of P are :
P ( 1 × 4 + 2 × (-5) / 1 + 2 , 1 × (-3) + 2 × 6 / 1 + 2 ) , i.e , P (-2 , 3 ).
Also, Q divides AB in the ratio 2 : 1.
So , the Coordinates of Q are
Q ( 2 × 4 + 1 × (-5 ) / 2 + 1 , 2 × (-3) + 1 × 6 / 2 + 1 ) , i.e , Q ( 1 , 0).
Hence,
The points of trisection of AB are P ( -2 , 3 ) and Q ( 1 , 0).
Similar questions