Math, asked by Niks2827, 1 year ago

Find the coordinates of the points which divide the line segment joining A (-2,2 ) B (2,8)into 4 equal parts

Answers

Answered by shubhdon9388
370

Answer:


Step-by-step explanation: hope ur answer is clear from the photo below


Attachments:
Answered by mysticd
241

Answer:

 Required\: coordinates\:of\\the \:points\:are\\(-1,\frac{7}{2}),\:(0,5),\:(1,\frac{13}{2})

Step-by-step explanation:

We know that,

The \:mid-point\:of\: the\:line\\segment \: joining\: the\: points\\(x_{1},y_{1}),\:and \:(x_{2},y_{2})\:is\:\big(\frac{x_{1}+x_{2}}{2},{y_{1}+y_{2}}{2}\big)

 Given \:the \:line \: joining \\A(-2,2),B(2,8)\: into \: four\: equal\\parts

AP = PQ = QR = RB

i)Mid\:point \: of \:AB \:is\:Q\\=\big(\frac{-2+2}{2},\frac{2+8}{2}\big)\\=\big(\frac{0}{2},\frac{10}{2}\big)\\=(0,5)

ii)Mid\:point \: of \:AQ \:is\:P\\=\big(\frac{-2+0}{2},\frac{2+5}{2}\big)\\=\big(\frac{-2}{2},\frac{7}{2}\big)\\=(-1,\frac{7}{2})

 iii)Mid\:point \: of \:QB \:is\:R\\=\big(\frac{0+2}{2},\frac{5+8}{2}\big)\\=\big(\frac{2}{2},\frac{13}{2}\big)\\=(1,\frac{13}{2})

Therefore,

 Coordinates \:of \: the \:points \\which \:divide\:the\:line\: segment\\joining \:A\:and\:B\: into\:4\: equal \:parts \:are\\(-1,\frac{7}{2}),\:(0,5),\:(1,\frac{13}{2})

Attachments:
Similar questions