Math, asked by gurnoorjhajj, 11 months ago

Find the coordinates of the points which divide the line segment joining a(-6,8) and b(8,-6) into four equal parts

Answers

Answered by Anonymous
8

Section formula :

Any point let say (x,y) divides the line joining points (x1 ,y1 ) & (x2 ,y2 ) in the ratio m:n, then co-ordinates were given by the formula

x \:  =  \frac{x1 \times n \:  + y1 \times m}{m + n}

y \:  =  \frac{y1  \times n \:  + y2 \times m}{m + n}

Given points A(−6,8) and B(8,−6)

(i) Point P(x,y) divides AB in the ratio 1:3

x \:  =  \frac{( - 6) \times 3 + 8 \times 1}{1 + 3}  =  \frac{ - 5}{2}

y \:  =  \frac{8 \times 1 + ( - 6) \times 1}{1 + 3}  =  \frac{9}{2}

Then,

(ii) Point Q(x,y) divides AB in the ratio 2:2=1:1

x \:  =  \frac{( - 6) \times 1 + 8 \times 1}{1 + 1}  =  1

y \:  =  \frac{8 \times 1 + ( - 6) \times 1}{1 + 1}  =  1

Then, Q(1,1)

(iii) Point R(x,y) divides AB in the ratio ratio 3:1

x \:  =  \frac{( - 6) \times 1 + 8 \times 3}{1 + 3}  =   \frac{9}{2}

y \:  =  \frac{( 8) \times 1 + ( - 6) \times 3 }{1 + 3} =  \frac{ - 5}{2}

Similar questions