Math, asked by bhaveshdixit02248, 6 months ago

Find the coordinates of the points which divides the join of (-1, 7) and (4, -3) in the ratio 2:3​

Answers

Answered by bswagatam04
4

Using section formula the coordinates will be-

(\frac{mx2+nx1}{m+n} , \frac{my2+ny1}{m+n})

m=2

n=3

x2= 4

x1= -1

y2= -3

y1= 7

Substitute the values, you will get the answer

: )

Answered by ImperialGladiator
2

Step-by-step explanation:

Using section formula :

  \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n} \frac{{my}_{2} + {ny}_{1}}{m + n} \\

Where,

m = 2

n = 3

\sf {x}_{1} = -1

\sf {x}_{2} = 4

\sf {y}_{1} =  7

\sf {y}_{2} = (-3)

Substitution of the values :

 \longmapsto \sf \:x, \: y  =  \frac{{mx}_{2} + {nx}_{1}}{m + n}, \frac{{my}_{2} + {ny}_{1}}{m + n} \\  \longmapsto \sf \:x, \: y  =  \frac{8 + ( - 3)}{5} , \frac{ - 6 + 21}{5}  \\  \sf \: \longmapsto x, \: y  =  \frac{5}{5} ,  \frac{15}{5}  \\  \sf \:  \longmapsto x, \: y  =( 1, 3 )\: ans.

Similar questions