Math, asked by khsrinivas22, 10 months ago

find the coordinates on x axis which is equidistant from point - 3, 4 and 2, 5​

Answers

Answered by Anonymous
1

Answer:

( 0.4, 0 )

Step-by-step explanation:

As the point it is on the x-axis, its y-coordinate is 0.  Its coordinates are then (x, 0) for some value of x.

The distance from (x, 0) to (-3, 4) is

         √( (diff in x coords)² + (diff in y coords)² )

      = √( ( x - (-3) )² + 4² )

      = √( ( x + 3 )² + 16 )

The distance from (x, 0) to (2, 5) is likewise

         √( ( x - 2 )² + 5² )  =  √( ( x - 2 )² + 25 ).

As (x, 0) is equidistant from (-3, 4) and from (2, 5), these two distances must be equal, so

   √( ( x + 3 )² + 16 )  =  √( ( x - 2 )² + 25 )

⇒ ( x + 3 )² + 16  =  ( x - 2 )² + 25

⇒ ( x + 3 )² - ( x - 2 )²  =  25 - 16

⇒  ( x² + 6x + 9 ) - ( x² - 4x + 4 ) = 9

⇒  10x + 5 = 9

⇒  10x = 4

⇒  x = 0.4

Hope this helps.

Answered by amitkumar44481
7

AnsWer :

P( 4/10 , 0 )

Solution :

We have, Point.

Let point be,

  • A( -3 , 4 )
  • B( 2 , 5 )
  • P( x , 0 ) which equidistant from A and B
  • When, any point equidistant of any point from x - Axis then, y should be 0.

A/Q,

  \tt\dagger  \:  \:  \:  \:  \: PA = PB.

 \tt :  \implies  \sqrt{ {  \big(- 3 -  x \big)}^{2}  +  { \big(4 - 0 \big)}^{2} }  =  \sqrt{ { \big(2 - x \big) +  \big(5 - 0 \big)}^{2} }

 \tt  : \implies  \sqrt{9 +  {x}^{2}  - 6x + 16}  =  \sqrt{4 +  {x}^{2} - 8x + 16 }

 \tt :  \implies  \sqrt{9 +  {x}^{2} + 6x + 16 }  =  \sqrt{4 +  {x}^{2}  - 4x + 25 }

Remove both sides Roots.

 \tt :  \implies  {x}^{2}  + 6x + 25 =  {x}^{2}  - 4x + 29.

 \tt :  \implies   6x + 4x=   29 - 25.

 \tt :  \implies  10x = 4.

 \tt :  \implies  x =  \dfrac{4}{10}

Therefore, the required answer is 4/10.

Similar questions