Math, asked by kavitadanagoudra33, 1 month ago

Find the cor-ordinates of the points which
devides the line segment Joining the points
(-1,3) and (5,4)internaly ratio 1:2​

Answers

Answered by MathCracker
10

Question :-

Find the cor-ordinates of the points which

devides the line segment Joining the points

(-1,3) and (5,4) internally ratio 1:2.

Answer :-

  • The co-ordinate is 1,  \frac{10}{3}  \\

Step by step explanation :-

Using the section formula, if a point  \rm{(x,y) } divides the line joining the points \rm{(x_1 , y_1) } and \rm{(x_2 , y_2) } in the ratio  \rm{m :n } , then

\rm:\longmapsto{(x, y) = \bigg( \frac{mx_2 + nx_1 }{m+n} ,  \frac{my_2 + ny_1 }{m+n} \bigg)} \\

Let,  \rm{(a,b)}be the point which divides the line segment joining points (-1,3) and

(5,4) in the ratio 1:2 internally.

By section formula,

\rm:\longmapsto{(a, b) = \bigg(  \frac{(1 \times 5) + (2 \times  - 1)}{1 + 2} , \frac{(1 \times 4) + (2 \times 3)}{1 + 2}  \bigg) } \\  \\ \rm:\longmapsto{(a, b) = \bigg( \frac{5 + ( - 2)}{3}  ,  \frac{4 + 6}{3} \bigg) } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \rm:\longmapsto{(a, b) = \bigg(  \frac{ 3 }{3} ,  \frac{10}{3} \bigg) } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \bf:\longmapsto \red{(a, b) = \bigg( 1, \frac{10}{3}  \bigg) } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hence, 1 ,  \frac{10}{3}  \\ is the origin divides the line segment  \rm{( - 1, 3)} and (5, 4) in the ratio 1 : 2 internally.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions