Math, asked by kauhik, 1 year ago

Find the cost of digging a cuboidal pit 8m long, 6m broad and 3 m deep at the rate of ₹ 30 per m³

Answers

Answered by Loveleen68
8

Answer:

Hope it helps ☺️☺️☺️☺️ ............

Attachments:
Answered by Anonymous
29

Answer:

{\large{\underline{\underline{\pmb{\frak{Given:-}}}}}}

A Cuboidal Pit

  • ★ 8 m long
  • ★ 6 m broad
  • ★ 3 m deep

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\pmb{\frak{To \: Find:-}}}}}}

  • ★ The cost of digging cuboidal pit at the rate of ₹ 30 per m³.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\pmb{\frak{Using \: Formula :-}}}}}}

\quad\bigstar{\underline{\boxed{\sf{Volume  \: of \:  Cuboid  =  lbh  }}}}

\quad\bigstar{\underline{\boxed{\sf{Total  \: Cost = Volume  \: of  \: cuboidal  \: pit  \times  Cost  \: of  \: digging  \: per  \:  {m}^{3}}}}}

Where

  • ★ L = Lenght
  • ★ B = Breadth
  • ★ H = Height

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\pmb{\frak{Diagram:-}}}}}}

\setlength{\unitlength}{0.74 cm}\begin{picture}\thicklines\put(5.6,5.4){\bf}\put(11.1,5.4){\bf}\put(11.2,9){\bf}\put(5.3,8.6){\bf}\put(3.3,10.2){\bf}\put(3.3,7){\bf}\put(9.25,10.35){\bf}\put(9.35,7.35){\bf}\put(3.5,6.1){\sf 6\:m}\put(7.7,6.3){\sf 8\:m}\put(11.3,7.45){\sf 3\:m}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\pmb{\frak{Solution:-}}}}}}

\red\bigstar Here :-

  • ★ Lenght of cuboid = 8 m
  • ★ Breadth of cuboid = 6 m
  • ★ Height of cuboid = 3 m
  • ★ Cost of digging per m³ = ₹30

\begin{gathered}\end{gathered}

\red\bigstar Finding the Volume of Cuboidal Pit :-

\quad{\dashrightarrow{\sf{Volume  \: of \:  cuboid  =  l \times b \times h  }}}

  • Substuting the values

\quad{\dashrightarrow{\sf{Volume  \: of \:  cuboid  =  8 \times 6 \times 3  }}}

\quad{\dashrightarrow{\sf{Volume  \: of \:  cuboid  = 144 \:  {m}^{3}}}}

\quad{\bigstar{\underline{\boxed{\sf{\purple{Volume  \: of \:  cuboid  = 144 \:  {m}^{3}}}}}}}

The Volume of cuboidal pit is 144 m³.

\begin{gathered}\end{gathered}

\red\bigstar Now, Calculating the cost of digging cuboidal pit at the rate of ₹ 30 per m³ :-

\quad{\dashrightarrow{\sf{Total  \: Cost = Volume  \: of  \: cuboidal  \: pit  \times  Cost  \: of  \: digging  \: per  \:  {m}^{3}}}}

  • Substuting the values

\quad{\dashrightarrow{\sf{Total  \: Cost = 144\times 30}}}

\quad{\dashrightarrow{\sf{Total  \: Cost = 4320}}}

\quad{\bigstar{\underline{\boxed{\sf{\purple{Total  \: Cost = 4320}}}}}}

The cost of digging cuboidal pit is 4320.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\pmb{\frak{Learn \: More :-}}}}}}

\red\bigstar Formulas related to SA & Volume :-

\begin{array}{|c|c|c|}\cline{1-3}\bf Shape&\bf Volume\ formula&\bf Surface\ area formula\\\cline{1-3}\sf Cube&\tt l^3}&\tt 6l^2\\\cline{1-3}\sf Cuboid&\tt lbh&\tt 2(lb+bh+lh)\\\cline{1-3}\sf Cylinder&\tt {\pi}r^2h&\tt 2\pi{r}(r+h)\\\cline{1-3}\sf Hollow\ cylinder&\tt \pi{h}(R^2-r^2)&\tt 2\pi{rh}+2\pi{Rh}+2\pi(R^2-r^2)\\\cline{1-3}\sf Cone&\tt 1/3\ \pi{r^2}h&\tt \pi{r}(r+s)\\\cline{1-3}\sf Sphere&\tt 4/3\ \pi{r}^3&\tt 4\pi{r}^2\\\cline{1-3}\sf Hemisphere&\tt 2/3\ \pi{r^3}&\tt 3\pi{r}^2\\\cline{1-3}\end{array}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\pmb{\frak{Request:-}}}}}}

  • ★ If there is any difficulty viewing this answer in app, kindly see this answer at web (https://brainly.in/question/) for clear steps and understanding.
  • ★ Here is the question link : https://brainly.in/question/2275490

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Attachments:
Similar questions