Math, asked by skb08091997, 11 months ago

Find the cquation of the planc parallcl to line (x)/(1)=(y-7)/(-3)=(z+7)/(2) and containing the lines (x+1)/(-3)=(y-3)/(2)=(z+2)/(1) in vector and Cartesian form also find distance of plane from origin.​

Attachments:

Answers

Answered by saivivek16
0

Step-by-step explanation:

Aloha !

x/1=y-7/-3=z+7/2--->1

x+2/-3=y-3/2=z+2/1--->2

=>> x/1=x+2/-3

=x+2=-3x

=x+2/-3x=1

=x/-3x+2/-3x=1

=-⅓+2/-3x

=-3/3x

=-1=x

:.x= -1

y-7/-3=y-3/2

-3y+9=2y-14

-3y-2y=-14-9

-5y=-23

y=23/5

Thank you

Answered by Anonymous
0

Step-by-step explanation:

 \frac{x}{1} = \frac{y - 7}{ - 3} = \frac{z + 7}{2} ........(1)</p><p>  \\ </p><p></p><p> \frac{x + 2}{ - 3} = \frac{y - 3}{2} = \frac{z + 2}{1} ......(2) \\ =&gt; \frac{x}{1} = \frac{x + 2}{ - 3}  \\ </p><p></p><p> =  &gt; x+2=-3x \\ = \frac{x}{ - 3x} + \frac{2}{ - 3x}  \\ </p><p>=1</p><p></p><p>= \frac{1}{3} + \frac{2}{ - 3x} </p><p></p><p>= \frac{ - 3}{3x}  \\ </p><p>:.x= -1

=x+2/-3x=1

=-1=x

y-7/-3=y-3/2

-3y+9=2y-14

-3y-2y=-14-9

-5y=-23

y=23/5

Similar questions