Physics, asked by anishk1029, 9 months ago

Find the cross product of A = 2i + 3j + k and B = i -j + 2k. *
7i -3j -5k
7i + 3j + 5k
5i -7j +5k
5i +7j +5k​

Answers

Answered by Anonymous
233

Answer

Given -

\sf \vec{A} = 2\hat{\imath} + 3\hat{\jmath} + \hat{k}

\sf \vec{B} = \hat{\imath} - {\jmath} + 2\hat{k}

━━━━━━━━━━━━━

To find -

Cross Product of \sf \vec{A} and \sf \vec{B}

━━━━━━━━━━━━━

Formula used -

\sf \vec{A} \times \vec{B} = (A_2B_3 - B_2A_3 )\hat{\imath} - (A_1B_3 - B_1A_3)\hat{\jmath} + (A_1B_2 - B_1A_2)\hat{k}

━━━━━━━━━━━━━

Solution -

\implies\sf \vec{A} = 2\hat{\imath} + 3\hat{\jmath} + \hat{k}

\implies\sf \vec{B} = \hat{\imath} - j\hat{\jmath} +</p><p>2\hat{k}

━━━━━━━━━━━━━

\sf \vec{A} \times \vec{B} = [(3 \times 2) - ( - 1 \times 1)]\hat{\imath} - [(2 \times 2) - (1 \times 1)]\hat{\jmath} + [(2 \times  - 1) - (3 \times 1)]\hat{k}

\implies\sf = (6 - ( - 1))\hat{\imath}  - (4 - 1) \hat{\jmath} + ( - 2 - 3)\hat{k}

\implies\sf = 7\hat{\imath}  - 3\hat{\jmath}  - 5\hat{k}

\boxed{\sf \vec{A} \times \vec{B} = 7\hat{\imath}  - 3\hat{\jmath}  - 5\hat{k}}

━━━━━━━━━━━━━

Additional information -

\implies\sf \hat{\imath} \times \hat{\jmath} = \hat{k}

\implies\sf \hat{k} \times \hat{\jmath} = \hat{\imath}

\implies\sf \hat{k} \times \hat{\imath} = \hat{\jmath}

━━━━━━━━━━━━━

\implies\sf \hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0

━━━━━━━━━━━━━

If \sf \vec{C} = \sf \vec{A} \times \sf \vec{B}

Then , \sf \vec{C} is always perpendicular to both \sf \vec{A} and \sf \vec{B} .

━━━━━━━━━━━━━

Similar questions