Math, asked by Anonymous, 2 days ago

find the cross product of the two vectors
A = 9i + 6j - 8k
B = 2i - 4j + 9k

These i, j and k are i cap, j cap and k cap respectively.​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given vectors are

\rm :\longmapsto\:\vec{a} = 9\hat{i} + 6\hat{j} - 8\hat{k}

and

\rm :\longmapsto\:\vec{b} = 2\hat{i} - 4\hat{j} + 9\hat{k}

So,

 \red{\rm :\longmapsto\:\vec{a} \times \vec{b}}

\rm \:  =  \:  \:  \: \begin{gathered}\sf \left | \begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\9&6& - 8\\2& - 4&  9\end{array}\right | \end{gathered}

\rm \:  =  \:\hat{i}\begin{array}{|cc|}\sf 6 &\sf  - 8  \\ \sf  - 4 &\sf 9 \\\end{array} - \hat{j}\begin{array}{|cc|}\sf 9 &\sf  - 8  \\ \sf 2 &\sf 9 \\\end{array} + \hat{k}\begin{array}{|cc|}\sf 9 &\sf 6  \\ \sf 2 &\sf  - 4 \\\end{array}

\rm \:  =  \:\hat{i}(54 - 32) - \hat{j}(81 + 16) + \hat{k}( - 36 - 12)

\rm \:  =  \:22\hat{i} - 97\hat{j} - 48\hat{k}

Hence,

\rm :\longmapsto\:\boxed{ \tt{ \: \vec{a} \times \vec{b} =  \:22\hat{i} - 97\hat{j} - 48\hat{k} \: }}

More to know :-

\boxed{ \tt{ \: \vec{a} \times \vec{a} = 0 \: }}

\boxed{ \tt{ \: \vec{a} \times \vec{b} \:   =  \:  -  \: \vec{b} \times \vec{a} \: }}

\boxed{ \tt{ \:  |\vec{a} \times \vec{b}|  =  |\vec{a}| \:  |\vec{b}| \: sin \theta \: }}

\boxed{ \tt{ \: \vec{a} \times \vec{b} = 0 \:  \: \rm \implies\:\vec{a} \:  \parallel \: \vec{b} \: }}

\boxed{ \tt{ \:  { |\vec{a} \times \vec{b}| }^{2}  +  { |\vec{a}.\vec{b}| }^{2}  =  { |\vec{a}| }^{2} \:  { |\vec{b}| }^{2} \: }}

Similar questions