Math, asked by shaarudharshinijp, 5 months ago

Find the CSA and TSA of cube whose side is 8m.

Answers

Answered by Anonymous
0

Answer:

LSA IS 256 METER CUBE AND TSA IS 288 METER CUBE.

Step-by-step explanation:

FOR TSA

TSA OF CUBE =

6 {a}^{2}

TSA=6×8×8

=48×6

=288 meter square

FOR CSA

CSA=LSA (because cube has lateral surface no curved surface)

LSA=

4 ({side})^{2}

LSA=4×8×8

=32×8

=256 meter square

Answered by Agamsain
0

Answer :-

  • TSA of cube = 384 cm²
  • LSA of cube = 256 cm²

Given :-

  • Side of cube = 8 cm

To Find :-

  • TSA of cube = ?
  • LSA of cube = ?

Explanation :-

As we know, TSA means area of all faces of a solid shape and LSA means area of four faces of a solid shape.

 \blue { \boxed { \bf \bigstar \; TSA \; of \; cube = 6 \; (Side)^2 \; \bigstar }}

\rm : \; \longmapsto 6 \; (8)^2 \; \; cm^2

\rm : \; \longmapsto 6 \times 8 \times 8 \; \; cm^2

\rm : \; \longmapsto 6 \times 64 \; \; cm^2

\red { \underline { \boxed { \bf : \; \longmapsto 384 \; \; cm^2 \qquad \star }}}

 \pink { \boxed { \bf \bigstar \; CSA \; of \; cube = 4 \; (Side)^2 \; \bigstar }}

\rm : \; \longmapsto 4 \; (8)^2 \; \; cm^2

\rm : \; \longmapsto 4 \times 8 \times 8 \; \; cm^2

\rm : \; \longmapsto 4 \times 64 \; \; cm^2

\green { \underline { \boxed { \bf : \; \longmapsto 256 \; \; cm^2 \qquad \star }}}

Hence, the TSA and LSA of cube are 384 cm² and 256 cm² respectively.

\huge \text{\underline{\underline{More To Know}}}

\rm \star \; Diagonal \; of \; Cuboid = \sqrt{(L)^2+(B)^2+(H)^2}

\rm \star \; Diagonal \; of \; Cube = \sqrt{3} \; (Side)

\rm \star \; TSA \; of \; Cuboid = 2 \; (LB+BH+HL)

\rm \star \; TSA \; of \; Cube = 6(Side)^2

\rm \star \; LSA \; of \; Cuboid = 2H\; (L+B)

\rm \star \; LSA \; of \; Cube = 4(Side)^2

Similar questions