Math, asked by sagacioux, 1 month ago

Find the csa, tsa, and volume of cylinder where height is 8 cm and diameter is 21 cm​​

Answers

Answered by SparklingThunder
7

\huge\purple{ \underline{ \boxed{\mathbb{\red{QUESTION : }}}}}

Find the csa, tsa, and volume of cylinder where height is 8 cm and diameter is 21 cm .

\huge\purple{ \underline{ \boxed{\mathbb{\red{ANSWER : }}}}}

Volume of cylinder = \sf2772\:{cm}^{3}

CSA of cylinder = \sf528\:{cm}^{2}

TSA of cylinder = \sf1221\:{cm}^{2}

\huge\purple{ \underline{ \boxed{\mathbb{\red{EXPLANATION : }}}}}

\green{ \large \underline{ \mathbb{\underline{GIVEN : }}}}

  • Diameter of cylinder ( d )= 21 cm

  • Height of right circular cylinder ( h )= 8 cm

 \green{ \large \underline{ \mathbb{\underline{TO  \: FIND : }}}}

  • Volume of cylinder .

  • CSA of cylinder .

  • TSA of cylinder .

 \green{ \large \underline{ \mathbb{\underline{FORMULAS \:  USED: }}}}

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf\pi {r}^{2}h $}  \\  \\  \textsf{CSA of cylinder = $\sf2\pi rh $ } \\  \\ \textsf{TSA of cylinder = $\sf2\pi r(h + r) $} \end{array}}}

\green{ \large \underline{ \mathbb{\underline{SOLUTION: }}}}

 \displaystyle \textsf{Radius of cylinder} \sf =  \frac{d}{2}    \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: \\  \\  \displaystyle \textsf{Radius of cylinder} \sf =  \frac{21}{2} \:   \:  \:  \:  \:  \:  \:  \:   \: \: \\  \\  \displaystyle \textsf{Radius of cylinder} \sf = 10.5 \: cm \:

  \red{ \underline{\underline{\textsf{Volume of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf = \frac{22}{7}   \times  {(10.5)}^{2}  \times 8 \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf  =  \frac{22}{7}  \times 110.25 \times 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \displaystyle \longrightarrow \textsf{Volume of cylinder  } \sf =2772 \:   {cm}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \red{ \underline{\underline{\textsf{CSA of cylinder : }}}}

\displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = 2 \times  \frac{22}{ 7} \times 10.5 \times  8  \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf = \frac{44}{7} \times 84 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\ \displaystyle \longrightarrow \textsf{CSA of cylinder  } \sf =528 \:   {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:

  \red{ \underline{\underline{\textsf{TSA of cylinder : }}}}

 \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = 2 \times  \frac{22}{ 7} \times  10.5 \: (8 + 10.5)   \:  \:  \: \:  \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf = \frac{44}{7}  \times 194.25 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:    \\  \\ \displaystyle \longrightarrow \textsf{TSA of cylinder  } \sf =1221 \:   {cm}^{2}   \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:

 \purple{ \boxed{ \begin{array}{l} \textsf{Volume of cylinder = $ \sf2772 \:  {cm}^{3}  $}  \\  \\  \textsf{CSA of cylinder = $\sf528 \:  {cm}^{2} $ } \\  \\ \textsf{TSA of cylinder = $\sf1221 \:  {cm}^{2}  $} \end{array}}}

Answered by BrainlyPrivacy
43

Answer :

  • Volume of cylinder is 2772 cm³.
  • C.S.A of cylinder is 528 cm².
  • T.S.A of cylinder is 1221 cm².

Given :-

  • Volume of cylinder where height is 8 cm and diameter is 21 cm.

To Find :-

  • Volume of cylinder ?
  • C.S.A of cylinder ?
  • T.S.A of cylinder ?

Solution :-

  • Height of cylinder = 8 cm
  • Distance of base of cylinder = 21 cm
  • Radius of base of cylinder = Diameter/2 = 21/2 cm.

We know that,

• Using formula,

  • Volume of cylinder = πr²h

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 21/2 cm
  • h = 8 cm

• Putting all values in formula,

➻ Volume of cylinder = 22/7 × (21/2)² × 8

➻ Volume of cylinder = 22/7 × 21/2 × 21/2 × 8

➻ Volume of cylinder = 11 × 3 × 21 × 4

➻ Volume of cylinder = 33 × 84

Volume of cylinder = 2772 cm³

  • Hence, volume of cylinder is 2772 cm³.

We know that,

• Using formula,

  • C.S.A of cylinder = 2πrh

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 21/2 cm
  • h = 8 cm

• Putting all values in formula,

➻ C.S.A of cylinder = 2 × 22/7 × 21/2 × 8

➻ C.S.A of cylinder = 22 × 3 × 8

➻ C.S.A of cylinder = 66 × 8

C.S.A of cylinder = 528 cm²

  • Hence, C.S.A of cylinder is 528 cm².

We know that,

• Using formula,

  • T.S.A of cylinder = 2πr(r + h)

Where,

  • π = Pi
  • r = radius of base of cylinder
  • h = height of cylinder

We have,

  • π = 22/7
  • r = 21/2 cm
  • h = 8 cm

• Putting all values in formula,

➻ T.S.A of cylinder = 2 × 22/7 × 21/2(21/2 + 8)

➻ T.S.A of cylinder = 22 × 3(10.5 + 8)

➻ T.S.A of cylinder = 22 × 3 × 18.5

➻ T.S.A of cylinder = 66 × 18.5

T.S.A of cylinder = 1221 cm²

  • Hence, T.S.A of cylinder is 1221 cm².

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

Similar questions