Find the cube of each of the following numbers using alternate method. (i)34 (ii)85 (iii)96 (iv)71 (v)62
Answers
Answer:
we have to multiply it three times
Step-by-step explanation:
- 34*34*34= 39,304 is the answer
- 85*85*85= 614,125
- 96*96*96= 884,736
- 71*71*71= 357,911
5. 62*62*62= 238,328
I hope it help you
thnkuuu
The cubes of the given numbers are 39304, 614125, 884736, 357911, 238328
Given:
(i) 34 (ii) 85 (iii) 96 (iv) 71 (v) 62
To find:
Cube of each of the numbers using alternative methods
Solution:
As we know from algebraic identities
(a + b)³ = a³+ b³ + 3ab (a + b)
(a – b)³ = a³ - b³ - 3ab (a - b)
Using the above identities we will find cubes of given numbers as given below
(i) 34
Here 34 = 30 + 4
34³ = (30 + 4)³
From (a + b)³ = a³+ b³ + 3ab (a + b)
(30 + 4)³ = 30³ + 4³ + 3(30)(4)(34)
= 27000 + 64 + 12240
= 39304
(ii) 85
85³ = (80 + 5)³
=> (80 + 5)³ = 80³+ 5³ + 3(80)5 (85)
= 512000 + 125 + 102000
= 614125
(iii) 96
96 = (100 - 4)
From (a – b)³ = a³ - b³ - 3ab (a - b)
(100 - 4)³ = 100³ - 4³ - 3(100)(4) (96)
= 1000000 - 64 - 115200
= 884736
(iv) 71
71 = (70 + 1)
(70 + 1)³ = 70³+ 1³ + 3(70)1 (71)
= 343000 + 1 + 14910
= 357911
(v) 62
62 = (60 + 2)
(60 + 2)³ = 60³+ 2³ + 3(60)2 (62)
= 216000 + 8 + 22320
= 238328
Therefore,
The cubes of the given numbers are 39304, 614125, 884736, 357911, 238328
#SPJ2