find the cube root of (1)76.25 (2)37.62 (3)458 (4)732
Answers
==================================================
Cube root of 76.25
___________________________________________
Cube root of 37.62
_________________________________________
Cube root of 458
_________________________________________
Cube root of 732
__________________________________________
# Be Brainly
^__^
Step-by-step explanation:
Holla ! Here is u r Ans>
==================================================
Cube root of 76.25
= \sqrt[3]{76.25}=
3
76.25
= \sqrt[3]{ \frac{305}{4} } = \frac{ \sqrt[3]{305} }{ \sqrt[3]{4} }=
3
4
305
=
3
4
3
305
= \frac{ \sqrt[3]{305 \times 4 {}^{2} } }{4} = \frac{ \sqrt[3]{305 \times 16} }{4}=
4
3
305×4
2
=
4
3
305×16
= \frac{2 \sqrt[3]{305 \times 2} }{4}=
4
2
3
305×2
\frac{ \sqrt[3]{305 \times 2} }{2}
2
3
305×2
= \frac{ \sqrt[3]{610} }{2}=
2
3
610
___________________________________________
Cube root of 37.62
= \sqrt[3]{37.62}=
3
37.62
= \sqrt[3]{ \frac{1881}{50} } = \frac{ \sqrt[3]{1881} }{ \sqrt[3]{50} }=
3
50
1881
=
3
50
3
1881
= \frac{ \sqrt[3]{1881 \times 50 {}^{2} } }{50} = \frac{ \sqrt[3]{1881 \times 2500} }{50}=
50
3
1881×50
2
=
50
3
1881×2500
= \frac{5 \sqrt[3]{1881 \times 20} }{50} = \frac{5 \sqrt[3]{1881 \times 20} }{10}=
50
5
3
1881×20
=
10
5
3
1881×20
= \frac{ \sqrt[3]{37620} }{10}=
10
3
37620
_________________________________________
Cube root of 458
= \sqrt[3]{458}=
3
458
\sqrt[3]{458} = congruent \: 7.70824
3
458
=congruent7.70824
_________________________________________
Cube root of 732
\sqrt[3]{732} = < br / > congruent \: 9.01233
3
732
=<br/>congruent9.01233
__________________________________________
# Be Brainly
^__^