Math, asked by Raghavnanu5047, 1 year ago

Find the cube root of 216 by prime factorisation

Answers

Answered by sudhakiransingh84
184

 \sqrt[3]{216}  =  \sqrt[3]{2 \times 2 \times 2 \times 3 \times 3 \times 3}

=2×3

=6

hope you will like my answer.

please mark this answer as a brainliest.

Answered by pulakmath007
12

The cube root of 216 = 6

Given :

The number 216

To find :

The cube root of 216 by prime factorisation

Solution :

Step 1 of 3 :

Write down the given number

Here the given number is 216

Step 2 of 3 :

Prime factorise the number

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:216 \:\:}}}\\ {\underline{\sf{2}}}&\underline{\sf{\:\:108 \:\:}} \\ {\underline{\sf{2}}}&\underline{\sf{\:\:54 \:\:}} \\\underline{\sf{3}}&\underline{\sf{\:\:27\:\:}}\\\underline{\sf{3}}&\underline{\sf{\:\:9\:\:}} \\ {\underline{\sf{3}}}&\underline{\sf{\:\:3\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

Thus we get

\displaystyle \sf 216

\displaystyle \sf  = 2 \times 2 \times 2 \times 3 \times 3 \times 3

\displaystyle \sf  =  {2}^{3}  \times  {3}^{3}

Step 3 of 3 :

Find cube root of 216

Hence the cube root of 216

\displaystyle \sf{ =  \sqrt[3]{216}   }

\displaystyle \sf{ =  \sqrt[3]{ {2}^{3}  \times  {3}^{3} }   }

\displaystyle \sf{ =  2 \times 3  }

\displaystyle \sf{ = 6 }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If a+b=7 and ab=4 and find Value of a² +b²

https://brainly.in/question/28413926

2. if (x+y) =9 and xy=6, find the value of x²+y²

https://brainly.in/question/23257499

Similar questions