Find the cube root of each of the following using (a+b)3=a3+3ab+3ab2+b3=12
Answers
Answered by
0
Answer:
(i) 64
\sqrt[3]{64}=\sqrt[3]{2\times2\times2\times2\times2\times2}
3
64
=
3
2×2×2×2×2×2
\sqrt[3]{64}=\ 2\times2
3
64
= 2×2
= 415625
\sqrt[3]{15625}=\sqrt[3]{5\times5\times5\times5\times5\times5}
3
15625
=
3
5×5×5×5×5×5
= 5 x 5
= 25
(vi) 13824
\sqrt[3]{13824}=\sqrt[3]{2\times2\times2\times2\times2\times2\times2\times2\times2\times3\times3\times3}
3
13824
=
3
2×2×2×2×2×2×2×2×2×3×3×3
= 2 x 2 x 2 x 3
= 24Solve : x-21 = 0
Add 21 to both sides of the equation :
x = 21
Similar questions