Find the cubic polynomial whose
zeroes are -1, 1, 2
Answers
Answer:
Step-by-step explanation:
Refer the above attachment for clear explanation..
HOPE THIS ANSWER HELPS YOU..
PLEASE MARK IT AS BRAINLIEST...
Answer:
Given three zeroes are -1, 1, 2
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]k[x^3-x^2(-1+1+2)+X(-1×2+1×2+2×-1]-(-1×1×2]
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]k[x^3-x^2(-1+1+2)+X(-1×2+1×2+2×-1]-(-1×1×2]k[x^3-x^2(2)+X(-2+2-2)-(-2)]
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]k[x^3-x^2(-1+1+2)+X(-1×2+1×2+2×-1]-(-1×1×2]k[x^3-x^2(2)+X(-2+2-2)-(-2)]k[x^3-2x^2+2x+2]
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]k[x^3-x^2(-1+1+2)+X(-1×2+1×2+2×-1]-(-1×1×2]k[x^3-x^2(2)+X(-2+2-2)-(-2)]k[x^3-2x^2+2x+2]let k=1
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]k[x^3-x^2(-1+1+2)+X(-1×2+1×2+2×-1]-(-1×1×2]k[x^3-x^2(2)+X(-2+2-2)-(-2)]k[x^3-2x^2+2x+2]let k=1x^3-2x^2+2x+2
Given three zeroes are -1, 1, 2p(X)=K[x^3-x^2(a+b+c)+X(ab+BC+ac-abc]k[x^3-x^2(-1+1+2)+X(-1×2+1×2+2×-1]-(-1×1×2]k[x^3-x^2(2)+X(-2+2-2)-(-2)]k[x^3-2x^2+2x+2]let k=1x^3-2x^2+2x+2.........................................................