Math, asked by sslvas2017, 3 months ago

Find the curvature of the curve y=x^3 at the point (1,1)

Answers

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

Now,

We know that,

\tt \:  \longrightarrow \:  \boxed{ \bf \red{Curvature \: ( \kappa) \:  = \dfrac{y_2}{ { \bigg(1 +  {(y_1)}^{2}  \bigg)}^{ \frac{3}{2} } } }}

\tt \:  \longrightarrow \: Now,  \: y \:  =  \:  {x}^{3}

☆ Differentiate both sides w. r. t. x, we get

\tt \:  \longrightarrow \: \dfrac{d}{dx}y =  \dfrac{d}{dx}  {x}^{3}

\tt \:  \longrightarrow \: \dfrac{dy}{dx} =y_1   = 3 {x}^{2}

☆ On differentiate both sides w. r. t. x, we get

\tt \:  \longrightarrow \: \dfrac{d}{dx} \dfrac{dy}{dx}  = \dfrac{d}{dx}  {3x}^{2}

\tt \:  \longrightarrow \: \dfrac{ {d}^{2}y }{ {dx}^{2} }  = y_2 = 6x

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{y_2}{ { \bigg(1 +  {(y_1)}^{2}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6x}{ { \bigg(1 +  {(3 {x}^{2} )}^{2}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6x}{ { \bigg(1 +  {9x}^{4}  \bigg)}^{ \frac{3}{2} } }

☆ Now curvature at (1, 1) is

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6 \times 1}{ { \bigg(1 +  {9 \times (1)}^{4}  \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \: Curvature \: ( \kappa) \:  = \dfrac{6}{ { \bigg(1 +  9 \bigg)}^{ \frac{3}{2} } }

\tt \:  \longrightarrow \:  \boxed{ \purple{ \bf \: Curvature \: ( \kappa) \:  = \dfrac{6}{ { \bigg(1 0\bigg)}^{ \frac{3}{2} } } }}

Similar questions