Math, asked by Rooooooppoo123, 10 months ago

Find the curvature p at the origin for the curve y-x = x^2 + 2xy + y^2.

Answers

Answered by MaheswariS
1

\textbf{Given:}

y-x=x^2+2xy+y^2

\textbf{To find:}

\text{Curvature of the given curve}

\textbf{Solution:}

\text{We know that,}

\text{The curvature of the curve at the point (x,y) is given by}

\bf\,K=\dfrac{y''(x)}{[1+(y'(x))^2]^{\frac{3}{2}}}

y-x=x^2+2xy+y^2

\implies\,y-x=(x+y)^2

\textbf{Differentiate with respect to x}

\dfrac{dy}{dx}-1=2(x+y)(1+\dfrac{dy}{dx})

\dfrac{dy}{dx}-1=2(x+y)+2(x+y)\dfrac{dy}{dx}

\dfrac{dy}{dx}-2(x+y)\dfrac{dy}{dx}=2x+2y+1

\dfrac{dy}{dx}(1-2x-2y)=2x+2y+1

\dfrac{dy}{dx}=\dfrac{-(2x+2y+1)}{2x+2y-1}

\textbf{Differentiate again with respect to x}

\dfrac{d^2y}{dx^2}=\dfrac{-[(2x+2y-1)(2+2\frac{dy}{dx})-(2x+2y+1)(2+2\frac{dy}{dx})]}{(2x+2y-1)^2}

\dfrac{d^2y}{dx^2}=\dfrac{-(2+2\frac{dy}{dx})[2x+2y-1-2x-2y-1]}{(2x+2y-1)^2}

\dfrac{d^2y}{dx^2}=\dfrac{-(2+2\frac{dy}{dx})(-2)}{(2x+2y-1)^2}

\dfrac{d^2y}{dx^2}=\dfrac{4+4\frac{dy}{dx}}{(2x+2y-1)^2}

\text{At (0,0)}

\dfrac{dy}{dx}=\dfrac{-(2(0)+2(0)+1)}{2(0)+2(0)-1}=1

\dfrac{d^2y}{dx^2}=\dfrac{4+4(1)}{(2(0)+2(0)-1)^2}=8

\text{Now,}

\bf\,K=\dfrac{y''(x)}{[1+(y'(x))^2]^{\frac{3}{2}}}

K=\dfrac{8}{[1+(1)^2]^{\frac{3}{2}}}

K=\dfrac{8}{2^{\frac{3}{2}}}

K=\dfrac{8}{\sqrt{8}}

K=\sqrt{8}

\therefore\textbf{The curvature of the given curve is $\bf\sqrt{8}$}

Similar questions