Math, asked by Diksha4321, 10 months ago

find the curved surface area and the total surface area of a cylinder whose base radius is 140 cm and height is 16 m​

Answers

Answered by Anonymous
70

AnswEr :

  • Radius = 140cm = 1.4m
  • Height = 16m
  • Find CSA and, TSA of Cylinder.

Curved Surface Area of Cylinder :

\longrightarrow\tt CSA = 2\pi r h \\ \\\longrightarrow\tt CSA = 2 \times \dfrac{22}{ \cancel7}\times \cancel{1.4} \times16 \\ \\\longrightarrow\tt CSA = 2 \times 22 \times 0.2 \times 16 \\ \\\longrightarrow\tt CSA = (44 \times 3.2) {m}^{2} \\ \\\longrightarrow  \boxed{\orange{\tt CSA = 140.8 \:{m}^{2}}}

CSA of the Cylinder is 140.8 .

\rule{300}{1}

Total Surface Area of the Cylinder :

\longrightarrow\tt TSA = 2\pi r(r + h) \\ \\\longrightarrow \tt TSA = 2 \times \dfrac{22}{ \cancel7} \times \cancel{1.4}\times (1.4 + 16) \\ \\\longrightarrow \tt TSA = 2 \times 22 \times 0.2 \times 17.4 \\ \\\longrightarrow \tt TSA = (44 \times 3.48) {m}^{2} \\ \\\longrightarrow \boxed{\orange{\tt TSA =153.12 \: {m}^{2}  }}

TSA of the Cylinder is 153.12 .

\rule{300}{2}

\star \: \underline \text{Some Information about Cylinder :}

⋆ A cylinder is a three-dimensional solid that holds two parallel bases joined by a curved surface, at a fixed distance.

⋆ The area of the curved surface of the cylinder which is contained between the two parallel circular bases. CSA = 2πrh

⋆ The total surface area of a cylinder is the sum of curved surafce area and the area of two circular bases. TSA = 2πr(r + h)

Volume = πr²h

#answerwithquality #BAL

Answered by Anonymous
50

\bf{\Huge{\underline{\boxed{\bf{\pink{ANSWER\::}}}}}}

\bf{Given,\begin{cases}\sf{A\:cylindrical\:base\:radius=140cm}\\ \sf{A\:cylindrical\:height=16m}\end{cases}}

→ height is 16m we convert cm;

→ We know that 1m = 100cm

So,

→ Height = (16 ×100)cm

→ Height = 1600cm

__________________________________________________________

\bf{Find\begin{cases}\sf{The\:curved\:surface\:area\:of\:a\:cylinder.}\\ \sf{The\:total\:surface\:area\:of\:a\:cylinder.}\end{cases}}

__________________________________________________________

\bf{\Large{\underline{\bf{\blue{Explanation\::}}}}}

\bf{\large{\underline{\sf{The\:curved\:surface\:area\::}}}}

Formula = 2πrh

\longmapsto\bf{(2*\frac{22}{7} *140*1600)cm^{2} }

\longmapsto\bf{(2*\frac{22}{\cancel{7}} *\cancel{140}*1600)cm^{2} }

\longmapsto\bf{(2*22*20*1600)cm^{2}}

\longmapsto\bf{1408000cm^{2}}

Hence,

The curved surface area of cylinder is 1408000cm².

\bf{\large{\underline{\sf{The\:total\:surface\:area\::}}}}

Formula= 2πr(h+r)

\longmapsto\bf{[2*\frac{22}{7} *140(1600+140)]cm^{2}}

\longmapsto\bf{[2*\frac{22}{\cancel{7}} *\cancel{140}(1600+140)]cm^{2}}

\longmapsto\bf{[44*20(1740)]cm^{2}}

\longmapsto\bf{(44*34800)cm^{2}}

\longmapsto\bf{1531200cm^{2}}

Hence,

The total surface area of cylinder is 1531200cm².

Similar questions