Math, asked by meenapatil3500, 1 month ago

Find the curved surface area and total surface area of cylinder whose radii and heights are given below: Radius Height 10.5 cm 14 cm .​

Answers

Answered by Anonymous
12

Answer:

Formula used :-

  \huge { \pink{\boxed{ \rm  \green{2\pi rh }}}}

 \huge \pink{\boxed{  \rm\purple{2πr(h + r)}}}

step by step explanation

Step-by-step explanation:

 \large \cal { \colorbox{red}{ \color{lime}{Have Given :-}}}

 \rm Radius \:  of  \: cylinder = 10.5 \: cm

 \rm Height  \: of \:  cylinder = 14 \: cm

 \large \bold{ \colorbox{orange}{ \color{lime}{To find :-}}}

{ \huge{ \green \star }}  \rm \:  Curved \:  surface  \: area  \: of \:  cylinder

{ \huge{ \color{lime} \star }}  \rm \:  Total \:  surface \:  area  \: of \:  cylinder

 \large \rm \pink{ \underline{ \green{Solution :-}}}

 \rm curved  \: surface  \: area \:  of  \: cylinder= 2πrh

  \rm = 2 \times  \frac{22}{ \cancel7}  \times 10.5 \times  \cancel{14}

 \rm = 2 \times 22 \times 10.5 \times 2

 \rm = 44 \times 21

 \rm = 294 \:  {cm}^{2}

Now,

 \rm Total  \: surface \:  area \:  of  \: cylinder = 2πr(h + r)

 \rm = 2 \times  \frac{22}{7}  \times 10.5(14 + 10.5)

 \rm =  \frac{44}{7}  \times 10.5(24.5)

 =  \frac{44}{ \cancel7}   \times \cancel{257.25}

 = 44 \times 36.75

 \rm = 1617 \:  {cm}^{2}

 \large \rm  \colorbox{lime}{ \color{blue} {Finale answer is}}

 \rm curved  \: surface  \: area \:  of  \: cylinder= 294 \:  {cm}^{2}

 \rm Total  \: surface \:  area \:  of  \: cylinder = 1617 \: {cm}^{2}

Similar questions