Math, asked by jennifermay, 11 months ago

Find the curved surface area and total surface area of a cylinder whose dimensions are radius of the base = 21cm and height =1 m

Answers

Answered by manojbalaram69
2

Answer:

csa of cylinder

Step-by-step explanation:

CSA OF CYLINDER IS 2πrh

given

height of cylinder=1

radius of cylinder =21

csa=2πrh

=2×22/7×21×1

=44/7×21

=851/7

=121.57cmsquare

TSA OF CYLINDER

given

given height of cylinder=1

given height of cylinder=1radius of cylinder =21

TSA of cylinder=2πr(r+h)

2×22/7×21 (21+1)

44/7×21 (22)

851/7×22

=2674 square units

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{C.S.A\:of\:cylinder=13200\:cm}^{2}}}

\green{\therefore{\text{T.S.A\:of\:cylinder=15972\:cm}^{2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Radius(r) = 21\: cm} \\ \\ : \implies \text{Height(h) = 100 \: cm} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{C.S.A \: of \: cylinder = ? }\\ \\ : \implies \text{T.S.A\: of \: cylinder = ? }

• According to given question :

 \bold{As \: we \: know \: that }  \\ : \implies \text{C.S.A\: of \: cylinder} =2\pi rh \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times \frac{ 22}{7} \times 21 \times 100 \\ \\ : \implies \text{C.S.A\: of \: cylinder} =2 \times 22 \times 300 \\ \\ \green{ : \implies \text{C.S.A\: of \: cylinder} =13200 \: {cm}^{2}} \\ \\ \bold{As \: we \: know \: that} \\ : \implies \text{T.S.A\: of \: cylinder} =2\pi r(h + r) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times \frac{22}{7} \times 21(100 + 21) \\ \\ : \implies \text{T.S.A\: of \: cylinder} =2 \times 22 \times 363 \\ \\ \green{ : \implies \text{T.S.A\: of \: cylinder} =15972\: {cm}^{2} }

Similar questions