Math, asked by Ritij4323, 11 months ago

Find the curved surface area and total surface area of a cylinder with radius equals to 15 cm and height equals to 35 cm

Answers

Answered by ksnagra99
0

Step-by-step explanation:

.....................

Attachments:
Answered by Anonymous
0

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Radius \: of \: the \: cylinder = 15cm \\  \\  \sf \: Height \: of \: cylinder = 35cm

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cylinder \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cylinder

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 15(15 + 35) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 15(50) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area = 4700 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 15 \times 35 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 3300 \:  {cm}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: The \: total \: surface \: area \: of \: cylinder \: is \\ \sf \: 4700 {cm}^{2}  \: and \: curved \: surface \: area \: is \: 3300 {cm}^{2}.

Similar questions