Math, asked by sanikajadhav03, 2 months ago

find the curved surface area and total surface area of a cylinder r = 4.2 cm and h = 14 cm ​

Answers

Answered by CɛƖɛxtríα
90

Answer:

  • The CSA of the cylinder is and the 369.6 cm² and the TSA of the cylinder is 480.48 cm².

Explanation:

{\underline{\underline{\bf{Given:}}}}

  • Base radius of a cylinder = 4.2 cm
  • Height of the cylinder = 14 cm

{\underline{\underline{\bf{Need\:to\:find:}}}}

  • The curved surface area and total surface area of the cylinder.

{\underline{\underline{\bf{Formulae\:to\:be\:used:}}}}

\underline{\boxed{\sf{{CSA}_{[Cylinder]}=2\pi rh\:sq.units}}}

\underline{\boxed{\sf{{TSA}_{[Cylinder]}=2\pi r(h+r)\:sq.units}}}

{\underline{\underline{\bf{Solution:}}}}

\red\bigstar CSA of the cylinder

By inserting the measures of radius and height in the formula:

\mapsto{\sf{2\pi rh\:sq.units}}

we can find the CSA of the cylinder. The value of \sf{\pi} can be taken as \sf{\frac{22}{7}}.

\:\:\:\:\:\:\:\:\:\:\implies{\sf{2\times \dfrac{22}{\cancel{7}}\times 4.2\times \cancel{14}}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{2\times 22\times 4.2\times 2}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{44\times 4.2\times 2}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{44\times 8.4}}

\:\:\:\:\:\:\:\:\:\:\implies{\frak{\red{\underline{\underline{369.6\:{cm}^{2}}}}}}

\red\bigstar TSA of the cylinder:

Substitute the measure of radius and height in the formula of total surface area of cylinder.

\mapsto{\sf{2\pi r(h+r)\:sq.units}}

As mentioned above, the value of \sf{\pi} can be taken as \sf{\frac{22}{7}}.

\:\:\:\:\:\:\:\:\:\:\implies{\sf{2\times \dfrac{22}{7}\times 4.2\times (14+4.2)}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{2\times \dfrac{22}{\cancel{7}}\times \cancel{4.2}\times 18.2}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{2\times 22\times 0.6\times 18.2}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{44\times 0.6\times 18.2}}

\:\:\:\:\:\:\:\:\:\:\implies{\sf{44\times 10.92}}

\:\:\:\:\:\:\:\:\:\:\implies{\frak{\red{\underline{\underline{480.48\:{cm}^{2}}}}}}

_________________________________________________

Answered by Anonymous
9

Correct Question-:

  • Find the Curved Surface Area and Total Surface Area of a Cylinder . Radius = 4.2 cm and Height = 14 cm .

AnswEr-:

  • \underline{\boxed{\star{\sf{\purple{ Curved\:Surface\:Area\:_{(Cylinder)}  \: = \: 369.6cm^{2} }}}}}
  • \underline{\boxed{\star{\sf{\purple{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \: 480.48cm^{2} }}}}}

EXPLANATION-:

 \frak{Given \:\: -:} \begin{cases} \sf{The\:Radius \:of\:Cylinder \:\:is\:= \frak{4.2cm}} & \\\\ \sf{The\:Height \:of\:Cylinder \:is \:=\:\frak{14cm}}\end{cases} \\\\

 \frak{To\:Find\: -:} \begin{cases} \sf{The\:Curved\:Surface \:Area\:of\:Cylinder \:\:.} & \\\\ \sf{The\:Total\:Surface \:Area\:of\:Cylinder \: \:}\end{cases} \\\\

\underline{\dag{\star{\sf{\red{ Curved\:Surface\:Area\:of\:Cylinder  \:  }}}}}

\underline{\boxed{\star{\sf{\blue{ Curved\:Surface\:Area\:_{(Cylinder)}  \: = \:  2 × \pi × Radius × Height }}}}}

 \frak{Here\:\: -:} \begin{cases} \sf{The\:Radius \:of\:Cylinder \:\:is\:= \frak{4.2cm}} & \\\\ \sf{The\:Height \:of\:Cylinder \:is \:=\:\frak{14cm}} & \\\\ \sf{\pi = \frac{22}{7}} \end{cases} \\\\

Now ,

  • \implies{\sf{\large{Curved\: Surface\:Area _ {Cylinder} = 2 × \frac {22}{7} × 4.2 × 14}}}
  • \implies{\sf{\large{Curved\: Surface\:Area _ {Cylinder} = 2 × 22 × 4.2  × 2 }}}
  • \implies{\sf{\large{Curved\: Surface\:Area _ {Cylinder} = 44 × 4.2 × 2 }}}
  • \implies{\sf{\large{Curved\: Surface\:Area _ {Cylinder} = 44 × 8.4  }}}
  • \implies{\sf{\large{Curved\: Surface\:Area _ {Cylinder} = 369.6 cm^{2}  }}}

Therefore,

  • \underline{\boxed{\star{\sf{\purple{ Curved\:Surface\:Area\:_{(Cylinder)}  \: = \: 369.6cm^{2} }}}}}

\underline{\dag{\star{\sf{\red{ Total\:Surface\:Area\:of\:Cylinder  \:  }}}}}

  • \underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \:  2 × \pi × Radius ( Height+ Radius) }}}}}
  •  \frak{Here\:\: -:} \begin{cases} \sf{The\:Radius \:of\:Cylinder \:\:is\:= \frak{4.2cm}} & \\\\ \sf{The\:Height \:of\:Cylinder \:is \:=\:\frak{14cm}} & \\\\ \sf{\pi = \frac{22}{7}} \end{cases} \\\\

Now ,

  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × \frac {22}{7} × 4.2 ×( 14+4.2)}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 × 22×0.6( 14+4.2)}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 2 ×  22 × 0.6 ×18.2}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 44 × 0.6 ×18.2}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 44× 10.92}}}
  • \implies{\sf{\large{Total\: Surface\:Area _ {Cylinder} = 480.48cm^{2}}}}

Therefore,

\underline{\boxed{\star{\sf{\blue{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \: 480.48cm^{2} }}}}}

Hence ,

  • \underline{\boxed{\star{\sf{\purple{ Curved\:Surface\:Area\:_{(Cylinder)}  \: = \: 369.6cm^{2} }}}}}
  • \underline{\boxed{\star{\sf{\purple{ Total\:Surface\:Area\:_{(Cylinder)}  \: = \: 480.48cm^{2} }}}}}

_____________________________♡__________________________________

Similar questions