Math, asked by ravinderdogra1711200, 4 months ago

Find the curved surface area and total surface area of a right circular cylinder whose height is 15 cm and the radius of the base is 7 cm

Answers

Answered by Anonymous
6

AnswEr-:

\sf{\bf{Given-:}}\\

  • The Height of Right Circular Cylinder is 15 cm .

  • The Base Radius of Right Circular Cylinder is 7 cm .

\sf{\bf{To\:Given-:}}\\

  • Curved Surface Area and Total Surface Area of Cylinder.

\mathrm {\bf{\dag{Solution \:of\:Question-:}}}\\

_________________________________________________

\mathrm {\bf{\star{Finding\:Curved\:Surface\:Area\:of\:Cylinder\:-:}}}\\

  • \underline{\boxed{\star{\sf{\red{  Curved\:Surface\:Area\:of\:Cylinder \:=\:2 \times \pi \times Radius \times Height \: sq.units }}}}}\\

\sf{\bf{Here-:}}\\

  • The Height of Right Circular Cylinder is 15 cm .

  • The Base Radius of Right Circular Cylinder is 7 cm .

  • \pi = \dfrac{22}{7}

Now by putting known Values in Formula for Curved surface area of Cylinder-:

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { C.S.A \:= 2 \times \dfrac{22}{7} \times 7 \times 15  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { C.S.A \:= 2 \times \dfrac{22}{\cancel {7}} \times \cancel {7} \times 15  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { C.S.A \:= 2 \times 22  \times 15  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { C.S.A \:= 44 \times 15  }}\\

  • \qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm { C.S.A \:= 660cm^{2} }}}}\\

Therefore,

  •  \underline {\star{\pink{\mathrm { C.S.A \:or\: Curved \:Surface \:Area\:of\:Cylinder \:= \: 660cm^{2} }}}}\\

_________________________________________________________

\mathrm {\bf{\star{Finding\:Total\:Surface\:Area\:of\:Cylinder\:-:}}}\\

  • \underline{\boxed{\star{\sf{\red{ Total \:Surface\:Area\:of\:Cylinder \:=\:2 \times \pi \times Radius ( Height+ Radius) \: sq.units }}}}}\\

\sf{\bf{Here-:}}\\

  • The Height of Right Circular Cylinder is 15 cm .

  • The Base Radius of Right Circular Cylinder is 7 cm .

  • \pi = \dfrac{22}{7}

Now by putting known Values in Formula for Total surface area of Cylinder-:

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { T.S.A \:= 2 \times \dfrac{22}{7} \times 7 ( 15+7)  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { T.S.A \:= 2 \times \dfrac{22}{\cancel {7}} \times \cancel {7} ( 15+7)  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { T.S.A \:= 2 \times 22 \times  ( 15+7)  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { T.S.A \:= 2 \times 22 \times  22  }}\\

  • \qquad \quad \qquad \quad \longmapsto{\mathrm { T.S.A \:=  44 \times  22  }}\\

  • \qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm { T.S.A \:= 968cm^{2} }}}}\\

Therefore,

  •  \underline {\star{\pink{\mathrm { T.S.A \:or\: Total \:Surface \:Area\:of\:Cylinder \:= \: 968cm^{2} }}}}\\

________________________________________________________________

Hence ,

  •  \underline {\star{\pink{\mathrm { C.S.A \:or\: Curved \:Surface \:Area\:of\:Cylinder \:= \: 660cm^{2} }}}}\\

  •  \underline {\star{\pink{\mathrm { T.S.A \:or\: Total \:Surface \:Area\:of\:Cylinder \:= \: 968cm^{2} }}}}\\

_________________________________________________________________

Answered by Anonymous
5

\Huge{\mathfrak{\purple{\underline{\pink{Solution}}}}}

Given:-

  • Height of C.S.A and T.S.A. is 15cm.
  • Radius is 7cm.

To Find:-

  • To find C.S.A nad T S.A = ?

Solution:-

Let's understand

Here,Height of C.S.A and T.S.A is given 15cm and it's radius is 7cm and we have to find C.S.A and T.S.A.

We know that,

\large\sf\red{Curved\:Surface\:Area\:of\:Cylinder=2×π×Radius×Height\:sq.\:units}

Now,Put the value

 \sf \implies \: c.s.a = 2 \times  \frac{22}{7}  \times 7 \times 15 \\  \\  \sf \implies \: c.s.a = 2 \times 22 \times 15 \\  \\  \sf \implies \: c.s.a  = 44 \times 15 \\  \\  \sf \implies \: c.s.a = 660 {cm}^{2}

Hence, Curved Surface Area is 660\sf{cm}^{2}.

After finding C.S.A now we have to find T.S.A.

We know that,

\large\sf\blue{Total\:Surface\:Area\:of\:Cylinder=2×π×Radius(Height + Radius)sq.\:units}

Now put the values

 \sf \implies \: t.s.a = 2 \times  \frac{22}{7}  \times 7(15 + 7) \\  \\  \sf \implies \: t.s.a = 2 \times 22 \times (15 + 7)  \\  \\  \sf \implies \: t.s.a = 2 \times 22 \times 22 \\  \\  \sf \implies \: t.s.a = 44 \times 22 \\  \\  \sf \implies \: t.s.a = 968 {cm}^{2}

Hence, Total Surface Area is 968\sf{cm}^{2}.

Similar questions