Math, asked by Modshelp, 3 months ago

Find the curved surface area and volume of a cylinder whose height and radius are (a)15 cm and 4 cm respectively. (b) 17cm and 5.5cm respectively.

Answers

Answered by pandaXop
99

CSA = 377.14 cm², 587.71 cm²

Vol. = 754.28 cm³, 1616.21 cm³

Step-by-step explanation:

Given:

  • Height and radius of first cylinder is 15 cm & 4 cm respectively.
  • Height and radius of second cylinder is 17 cm and 5.5 cm respectively.

To Find:

  • What is the CSA & Volume of both cylinders ?

Solution: As we know that

CSA of Cylinder = 2πrh

  • Taking π = 22/7

  • Height = 15 cm

  • Radius = 4 cm

➨ CSA¹ = 2 × 22/7 × 15 × 4 cm²

➨ 44/7 × 60 cm²

➨ 2640/7 cm²

➨ 377.14 cm²

For second cylinder

  • Height = 17 cm

  • Radius = 5.5 cm

➨ CSA = 2 × 22/7 × 17 × 5.5 cm²

➨ 44/7 × 93.5 cm²

➨ 4114/7 cm²

➨ 587.71 cm²

Volume of Cylinder = πr²h

  • Taking π = 22/7

➼ Volume¹ = 22/7 × 15 × 4 × 4 cm³

➼ 22/7 × 60 × 4 cm³

➼ 5280/7 cm³

➼ 754.28 cm³

For second cylinder

➼ Volume = 22/7 × 17 × 5.5 × 5.5 cm³

➼ 22/7 × 93.5 × 5.5 cm³

➼ 11313.5/7 cm³

➼ 1616.21 cm³

Hence, we got curved surface areas and volumes of both cylinders respectively.

Answered by Anonymous
124

Answer:

Given :-

  • (a) Height is 15 cm and radius is 4 cm.
  • (b) Height is 17 cm and radius 5.5 cm.

To Find :-

  • What is the curved surface area and volume.

Formula Used :-

\clubsuit Curved Surface Area or CSA of Cylinder :

\longmapsto \sf\boxed{\bold{\pink{Curved\: Surface\: Area =\: 2{\pi}rh}}}\\

\clubsuit Volume of Cylinder :

\longmapsto \sf\boxed{\bold{\pink{Volume\: of\: Cylinder =\: {\pi}{r}^{2}h}}}\\

Solution :-

{\small{\bold{\green{\underline{\dashrightarrow\: (a)\: Height =\: 15\: cm\: and\: radius =\: 4\: cm}}}}}

\Rightarrow\: \sf\bold{\purple{Curved\: Surface\: Area\: of\: Cylinder\: :-}}

Given :

  • Height = 15 cm
  • Radius = 4 cm
  • π = 22/7 or 3.14

According to the question by using the formula we get,

\dashrightarrow Curved Surface Area of Cylinder :

\implies \sf 2 \times \dfrac{22}{7} \times 15 \times 4

\implies \sf \dfrac{44}{7} \times 60

\implies \sf \dfrac{\cancel{2640}}{\cancel{7}}

\implies\sf\bold{\red{377.14\: cm^2}}

Hence, the curved surface area of cylinder is 377.14 cm².

\Rightarrow \sf\bold{\purple{Volume\: of\: Cylinder\: :-}}

Given :

  • Height = 15 cm
  • Radius = 4 cm

According to the question by using the formula we get,

\dashrightarrow Volume of Cylinder :

\implies \sf \dfrac{22}{7} \times {(4)}^{2} \times 15

\implies \sf \dfrac{22}{7} \times 16 \times 15

\implies \sf \dfrac{22}{7} \times 240

\implies \sf \dfrac{\cancel{5280}}{\cancel{7}}

\implies \sf \bold{\red{754.28\: {cm}^{3}}}

Hence, the volume of cylinder is 754.28 cm³.

\rule{150}{2}

{\small{\bold{\green{\underline{(b)\: Height =\: 17\: cm\: and\: radius =\: 5.5\: cm}}}}}

\Rightarrow\sf\bold{\purple{Curved\: Surface\:  Area\: of\: Cylinder\: :-}}

Given :

  • Height = 17 cm
  • Radius = 5.5 cm

According to the question by using the formula we get,

\dashrightarrow Curved Surface Area of Cylinder :

\implies \sf 2 \times \dfrac{22}{7} \times 5.5 \times 17

\implies \sf \dfrac{44}{7} \times 93.5

\implies \sf \dfrac{\cancel{4114}}{\cancel{7}}

\implies \sf\bold{\red{587.71\: cm^2}}

Hence, the curved surface area of cylinder is 587.71 cm².

\Rightarrow \sf\bold{\purple{Volume\: of\: Cylinder\: :-}}

Given :

  • Height = 17 cm
  • Radius = 5.5 cm

According to the question by using the formula we get,

\dashrightarrow Volume of Cylinder :

\implies \sf \dfrac{22}{7} \times {(5.5)}^{2} \times 17

\implies \sf \dfrac{22}{7} \times 30.25 \times 17

\implies \sf \dfrac{22}{7} \times 514.25

\implies \sf \dfrac{\cancel{11313.5}}{\cancel{7}}

\implies \sf\bold{\red{1616.21\: cm^{3}}}

Hence, the volume of cylinder is 1616.21 cm³.

Similar questions