Math, asked by faramohd2004, 3 months ago

Find the curved surface area of a cylinder given its base circumference is 36 cm and its height is 4 cm.
I WILL MAKE U AS A BRAINLESS PLS ANSWER THIS QUESTION

Answers

Answered by Anonymous
9

AnswEr-:

  • \underline{\mathrm {\bf{\dag{ \pink{Curved\:Surface\:Area\:or\:C.S.A \:of\:Cylinder\:= 143.68 \: cm^{2} \: [ Approx]  }}}}}\\\\

Explanation-:

  •  \mathrm{\bf{\blue {Given \:\: -:}}} \begin{cases} \sf{\blue{The\:Circumference \:of\:the\:base \:of\:Cylinder \:is\:= \frak{36\:cm}}} & \\\\ \sf{\red{Height \:of\:Cylinder \:is \:=\:\frak{4cm}}}\end{cases} \\\\

  •  \mathrm{\bf{\blue {To \:Find\: -:}}} \begin{cases} \sf{\blue{The\:Curved\:Surface \:Area\:of\:the\: \:of\:Cylinder }}\end{cases} \\\\

\mathrm {\bf{\dag{ Solution \:of\:Question \:-:}}}\\\\

  • First of all we need to find the Radius of the Cylinder's baee by putting the known Values in the Formula for Circumference of Circle .

\mathrm {\bf{\dag{Finding \:Radius \: of\:Cylinder's\:base\:-:}}}\\\\

As , We know that ,

  • \underline{\boxed {\red{\dag{\mathrm {Circumference _{( Circle)} = 2 \times \pi \times Radius\:units}}}}}\\

  •  \mathrm{\bf{\blue {Here \:\: -:}}} \begin{cases} \sf{\blue{The\:Circumference \:of\:the\:base \:of\:Cylinder \:is\:= \frak{36\:cm}}} & \\\\ \sf{\red{Radius \:of\:Cylinder's\:base \:is \:=\:\frak{??}}}& \\\\ \sf{\pink{ \pi   \:=\:\frak{\dfrac{22}{7}}}}\end{cases} \\\\

Now , By Putting known Values in Formula for Circumference for Circle-:

  • \longmapsto {\mathrm {36\:cm= 2 \times \dfrac{22}{7} \times Radius  }}\\
  • \longmapsto {\mathrm {36\:cm=  \dfrac{44}{7} \times Radius  }}\\
  • \longmapsto {\mathrm {\dfrac{36\times 7}{44}\:=  Radius  }}\\
  • \longmapsto {\mathrm {\dfrac{\cancel {252}}{\cancel {44}}\:=  Radius  }}\\
  • \underline {\boxed{\mathrm {Radius\:=5.72cm\:  }}}\\

Therefore,

  • \underline{\mathrm {\bf{\dag{ \pink{Radius \:of\:Cylinder's \: Base \:-:5.72\:cm}}}}}\\\\

________________________________________________

\mathrm {\bf{\dag{Finding \:Curved \:Surface \:Area\: of\:Cylinder\:-:}}}\\\\

  • \underline{\boxed {\red{\dag{\mathrm {Curved \:Surface \:Area_{( Cylinder)} = 2 \times \pi \times Radius\times Height\:sq.units}}}}}\\

  •  \mathrm{\bf{\blue {Here \:\: -:}}} \begin{cases} \sf{\blue{The\:Radius \:of\:the\:base \:of\:Cylinder \:is\:= \frak{5.72\:cm}}} & \\\\ \sf{\red{Height \:of\:Cylinder\: \:is \:=\:\frak{4cm}}}& \\\\ \sf{\pink{ \pi   \:=\:\frak{\dfrac{22}{7}}}}\end{cases} \\\\

  • Now , By Putting known Values in Formula for Curved surface area for Cylinder -:

  • \longmapsto {\mathrm {C.S.A \:= 2 \times \dfrac{22}{7} \times 5.72 \times 4   }}\\
  • \longmapsto {\mathrm {C.S.A \:=  \dfrac{44}{7} \times 5.72 \times 4   }}\\
  • \longmapsto {\mathrm {C.S.A \:=  \dfrac{44}{7} \times 22.88   }}\\
  • \longmapsto {\mathrm {C.S.A \:=  \dfrac{\cancel {44}}{\cancel {7}} \times 22.88   }}\\
  • \longmapsto {\mathrm {C.S.A \:= 6.28 \times 22.88   }}\\
  • \underline { \boxed{\mathrm {C.S.A \:= 143.68 \: cm^{2} \: [ Approx]  }}}\\

Hence,

  • \underline{\mathrm {\bf{\dag{ \pink{Curved\:Surface\:Area\:or\:C.S.A \:of\:Cylinder\:= 143.68 \: cm^{2} \: [ Approx]  }}}}}\\\\

___________________________________________________

Answered by Anonymous
2

Answer:

QUESTION

Find the curved surface area of a cylinder given its base circumference is 36 cm and its height is 4 cm.

ANSWER

 \fbox \green{first \: we \: will \: find \: radius} \\  \\ \red {36 \times 2 \times  \frac{22}{7}  \times r} \\  \\ \red {36 \times  \frac{44}{7}r} \\  \\ \red {r =  \frac{252}{44}} \\  \\ \pink { = r = 5.72cm} \\  \\  \\ \fbox \green{now \: we \: will \: find \: the \: of \: curved \: surface \: area \: of \:cylinder} \\  \\ \blue{2 \times  \frac{22}{7}  \times 5.72 \times 4} \\  \\ \blue{ \frac{44}{7}  \times 22.88} \\  \\ \blue {6.285 \times 22.88} \\  \\ \orange { = 143.817}

I hope it helps you

#SILENT GIRL ANSWER

Similar questions