Math, asked by xainlone856, 2 months ago

find the curved surface area of a frustum of a cone whose hight is 16cm and radii of its two ends as 8cm and 20cm respectively?

answerr plxx but right answerr..​

Answers

Answered by mathdude500
4

Given :-

  • Height of frustum, h = 16cm

  • Radius of frustum of one end, r = 8 cm

  • Radius of frustum of other end, R = 20 cm

To Find :-

  • Curved Surface Area of Frustum

Formula Used :-

 \red{\rm :\longmapsto\:CSA_{(frustum)} = \pi \: (R \:  +  \: r) \: l}

 \blue{\rm :\longmapsto\:l \:  =  \:  \sqrt{ {(R - r)}^{2} +  {h}^{2}}}

where,

  • R = radius of upper end of frustum

  • r = radius of lower end of frustum

  • h = height of frustum

  • l = slant height is frustum

  • CSA = Curved Surface Area

Solution :-

Given that,

Height of frustum, h = 16cm

Radius of frustum of one end, r = 8 cm

Radius of frustum of other end, R = 20 cm

So,

Slant height of frustum is

\rm :\longmapsto\:l \:  =  \:  \sqrt{ {(R - r)}^{2} +  {h}^{2}  }

\rm :\longmapsto\:l \:  =  \:  \sqrt{ {(20 - 8)}^{2} +  {16}^{2}  }

\rm :\longmapsto\:l \:  =  \:  \sqrt{ {12}^{2} +  {16}^{2}  }

\rm :\longmapsto\:l \:  =  \:  \sqrt{144+ 256}

\rm :\longmapsto\:l \:  =  \:  \sqrt{400}

\rm :\longmapsto\:l \:  =  \:  \sqrt{20 \times 20}

\bf\implies \:l = 20 \: cm

Now,

\rm :\longmapsto\:CSA_{(frustum)} = \pi \: (R \:  +  \: r) \: l

 \rm \:  \:  =  \:  \: \pi \: (20 + 8) \times 20

 \rm \:  \:  =  \:  \:  \dfrac{22}{7}  \times \: (20 + 8) \times 20

 \rm \:  \:  =  \:  \:  \dfrac{22}{7}  \times \: (28) \times 20

 \rm \:  \:  =  \:  \:  22 \times 80

 \rm \:  \:  =  \:  \:  1760 \:  {cm}^{2}

Additional Information :-

\rm :\longmapsto\:Volume_{(frustum)} = \dfrac{\pi \: h}{3}( {R}^{2} +  {r}^{2} + Rr)

\rm :\longmapsto\:TSA_{(frustum)} = \pi \: \bigg((R + r)l \:  +  \:  {R}^{2}  +  {r}^{2}  \bigg)

Similar questions