Math, asked by Anonymous, 9 months ago

Find the curved surface area of a right circular cone whose slant height is 10 cm and base radius is 7cm​

Answers

Answered by Cosmique
92

Given

  • Slant height of Right Circular cone, l = 10 cm
  • Base radius of Right circular cone, r = 7 cm

✪ To find

  • Curved Surface area ( CSA ) of Right circular Cone

Formula required

  • Formula to calculate CSA of Right circular Cone

CSA of cone = π r l

[ where l is slant height of Cone and r is base radius of cone ]

Calculation

Using formual to calculate CSA of cone

➥ CSA of cone = π r l

➥ CSA of cone = (22/7) × (7) × (10)

➥ CSA of cone = 22 × 10

CSA of cone = 220 cm^2

therefore,

  • Curved surface area of Right circular cone with slant height 10 cm and base radius 7 cm will be 220 sq. cms.

More related Formulae

  • Total surface area of Right circular cone

TSA of Cone = π r ( r + l )

  • Volume of Right circular cone

Volume of Cone = π r^2 h

[ where r is the base radius of cone, l is slant height of cone and h is perpendicular height of cone ]


BloomingBud: great answer
MisterIncredible: Fabulous !
Answered by Anonymous
59

Given :

\bullet\:\:\textsf{Slant height of right circular cone = \textbf{10 cm}}\\ \bullet\:\:\textsf{Radius of right circular cone = \textbf{7 cm}}</p><p>

\rule{130}1

To Find :

Curved surface area of cone = ?

\rule{130}1

Formula used :

 \huge\underline{\boxed{\gray{\bf CSA \:of right \: circular \:cone = \pi r l}}} \:   \: \bigstar

\rule{130}1

Solution :

\bigstar\:\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

:\implies\sf CSA = \pi r l \\\\\\:\implies\sf CSA = \dfrac{22}{ \cancel { 7}} \times { \cancel{7}} \times 10\:cm^2\\\\\\:\implies\underline{\boxed{\sf CSA = 220 cm^{2}}}

\therefore\:\underline{\textsf{The CSA of right circular cone is \textbf{220}}\: \sf cm^2}.

\rule{170}2

\boxed{\begin{minipage}{6 cm}\bigstar$\:\underline{\textbf{Formulae Related to Cone :}}\\\\\sf {\textcircled{\footnotesize\textsf{1}}} \:Area\:of\:Base =\pi r^2 \\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:CSA = \pi rl\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:TSA = Area\:of\:Base + CSA\\{\quad\:\:\:\qquad=\pi r^2+\pi rl}\\ \\{\textcircled{\footnotesize\textsf{4}}} \: \:Volume=\dfrac{1}{3}\pi r^2h\end{minipage}}


MisterIncredible: Awesome ✔️
Similar questions