Math, asked by desaidhruvya, 1 month ago

find the curved surface area , the total Surface area of right circular cylinder whose hight is 15cm and radius of base is 10.5cm​

Answers

Answered by Anonymous
41

Answer:

♦ The curved surface area of a circular cylinder = 990 cm²

♦ The total surface area of a circular cylinder = 1683 cm²

Step-by-step explanation:

Given:

  • Height of a circular cylinder = 15 cm
  • Radius of a base a circular cylinder = 10.5 cm

To find:

  • The curved surface area of a circular cylinder.
  • The total surface area of a circular cylinder.

Solution:

✰ Curved surface area = 2πrh

Where,

r is the radius of a circular cylinder.

h is the height of a circular cylinder.

Putting the values in the formula, we have:

  • Curved surface area = 2 × 22/7 × 10.5 × 15
  • Curved surface area = 44/7 × 10.5 × 15
  • Curved surface area = 44/7 × 157.5
  • Curved surface area = 6930/7
  • Curved surface area = 990 cm²

✰ Total surface area = 2πr ( h + r )

Where,

r is the radius of a circular cylinder.

h is the height of a circular cylinder.

Putting the values in the formula, we have:

  • Total surface area = 2 × 22/7 × 10.5 ( 15 + 10.5 )
  • Total surface area = 2 × 22/7 × 10.5 × 25.5
  • Total surface area = 44/7 × 10.5 × 25.5
  • Total surface area = 44/7 × 267.75
  • Total surface area = 11781/7
  • Total surface area = 1683 cm²

____________________________

Answered by Anonymous
31

Given that , The Height of Cylinder is 15 cm & Radius of base of Cylinder is 10.5 cm .

Need To Find : The Total Surface Area [ T.S.A ] & Curved surface area [ C.S.A ] of Cylinder .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding Total Surface Area ( T.S.A ) of Cylinder :

As , We know that ,

⠀⠀⠀➠ TOTAL SURFACE AREA of Cylinder :

\qquad \star \:\:\underline {\boxed {\bf {\pink { \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\pi r \bigg( h + r  \bigg)\:\:sq.units \:\:}}}}\\\\

⠀⠀⠀⠀⠀Here , r is the Base Radius of Cylinder , h is the Height of the cylinder & \sf \pi \:=\:\dfrac{22}{7}.

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\pi r \bigg( h + r  \bigg)\: \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\pi r \bigg( h + r  \bigg)\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\: 2 \times \dfrac{22}{7} \times  10.5 \bigg( 15 + 10.5  \bigg)\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\: 2 \times \dfrac{22}{7} \times  10.5 \bigg( 25.5 \bigg)\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\:  \dfrac{44}{7} \times  10.5 \bigg( 25.5 \bigg)\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\:  \dfrac{44}{7} \times  267.75\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\:  \dfrac{44}{\cancel {7}} \times  \cancel {267.75}\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\:  44 \times  38.25\: \\\\

\qquad \dashrightarrow \sf \:\: T.S.A _{(\:Cylinder \:)}\:\:=\:\:  1683 \:\: \\\\

\qquad \therefore \:\: \underline{\boxed{\purple {\pmb {\frak{ \:\:  T.S.A _{(\:Cylinder \:)}\:\:=\:\:  1683\:cm^2 \:\:}}}}}\\\\

\qquad \therefore \:\:\underline {\sf Hence,\:The\:Total \:Surface \:Area\:of \:Cylinder \:is \: \bf 1683\;cm^2 \:\:}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding Curved Surface Area ( C.S.A ) of Cylinder :

As , We know that ,

⠀⠀⠀➠ CURVED SURFACE AREA of Cylinder :

\qquad \star \:\:\underline {\boxed {\bf {\pink { \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\pi r h\:\:sq.units \:\:}}}}\\\\

⠀⠀⠀⠀⠀Here , r is the Base Radius of Cylinder , h is the Height of the cylinder & \sf \pi \:=\:\dfrac{22}{7}.

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\pi r h\: \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\pi r h\: \\\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\: 2\times \dfrac{22}{7}\times 10.5 \times  15\: \\\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\:  \dfrac{44}{7}\times 10.5 \times  15\: \\\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\:  \dfrac{44}{7}\times  157.5\: \\\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\:  \dfrac{44}{\cancel {7}}\times  \cancel{157.5}\: \\\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\:  44\times  22.5\: \\\\

\qquad \dashrightarrow \sf \:\: C.S.A _{(\:Cylinder \:)}\:\:=\:\:  990\: \\\\

\qquad \therefore \:\: \underline{\boxed{\purple {\pmb {\frak{ \:\:  C.S.A _{(\:Cylinder \:)}\:\:=\:\:  990\:cm^2 \:\:}}}}}\\\\

\qquad \therefore \:\:\underline {\sf Hence,\:The\:Curved \:Surface \:Area\:of \:Cylinder \:is \: \bf 990\;cm^2 \:\:}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions