Math, asked by sheetalbhate55, 10 months ago

find the curved surface area total surface area and volume of a cylinder with a diameter 7 cm and height 5 cm .pie 22/7​

Answers

Answered by StarrySoul
79

Given :

 \diamond \rm \: Diameter = 7 \: cm

 \diamond \rm \: Height = 5 \: cm

To Find :

\rm (i) \: \: Curved \: Surface \: Area

 \rm (ii)Total \:  Surface \: Area

 \rm \: (iii)Volume

Solution:

 \sf \: Radius =   \dfrac{7}{2} = 3.5 \: cm

\textbf{\underline{\underline{Curved\:Surface\:Area : }}}

 \star \tt \: C.S.A = 2\pi \: r \: h

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times  3.5 \times 5

 \hookrightarrow \sf \:  \dfrac{770}{7}

  \sf \: C.S.A =  \large \boxed{\sf \: 110 \:  {cm}^{2} }

\textbf{\underline{\underline{Total\:Surface\:Area : }}}

 \star \tt \: T.S.A = 2\pi \: r(r + h)

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times 3.5 \: (3.5 + 5)

 \hookrightarrow \sf \: 2 \times  \dfrac{22}{7}  \times 3.5  \times  8.5

 \hookrightarrow \sf \:  \dfrac{1309}{7}

  \sf \: T.S.A =  \large \boxed{\sf \: 187 \:  {cm}^{2} }

\textbf{\underline{\underline{Volume: }}}

 \star \rm \: Volume =  \pi {r}^{2} h

 \hookrightarrow \sf \: \dfrac{22}{7}  \times 3.5 \times 3.5 \times 5

 \hookrightarrow \sf  \dfrac{1347.5}{7}

  \sf \: Volume=  \large \boxed{\sf \: 192.5 \:  {cm}^{3} }

Answered by Anonymous
58

\bf{\Huge{\underline{\boxed{\bf{\purple{ANSWER\::}}}}}}

\bf{Given\begin{cases}\sf{The\:diameter\:of\:cylinder\:(d)\:=\:7cm}\\ \sf{The\:height\:of\:cylinder\:(h)\:=\:5cm}\\ \sf{The\:value\:of\:pie\:=\:\frac{22}{7} }\end{cases}}

\bf{\Large{\underline{\bf{To\:Find\::}}}}

  • The curved surface area of cylinder.
  • The total surface area of cylinder.
  • The volume of a cylinder.

\bf{\Large{\underline{\boxed{\rm{\green{Explanation\::}}}}}}

We have,

\leadsto\rm{Diameter\:=\:7cm}

\leadsto\rm{Radius\:=\:\frac{Diameter}{2} }

\leadsto\rm{Radius\:(r)\:=\:\frac{7}{2} cm}

  • \sf{\Large{\boxed{\sf{\blue{1.Volume\:of\:cylinder\::}}}}}

\longmapsto\rm{Volume\:=\:\pi r^{2} h}

\longmapsto\rm{Volume\:=\:(\frac{22}{7} *\frac{7}{2}*\frac{7}{2} *5)cm^{3} }

\longmapsto\rm{Volume\:=\:(\frac{\cancel{22}}{\cancel{7}} *\frac{\cancel{7}}{\cancel{2}}*\frac{7}{2} *5)cm^{3} }

\longmapsto\rm{Volume\:=\:(11*\frac{7}{2} *5)cm^{3} }

\longmapsto\rm{Volume\:=\:\cancel{(\frac{385}{2} )}cm^{3} }

\longmapsto\rm{\red{Volume\:=\:192.5cm^{3} }}}

  • \sf{\Large{\boxed{\sf{\blue{2.Curved\:surface\:area\:of\:cylinder\::}}}}}

\longmapsto\rm{C.S.A.\:=\:2\pi r h}

\longmapsto\rm{C.S.A.\:=\:(2*\frac{22}{7} *\frac{7}{2} *5)cm^{2} }

\longmapsto\rm{C.S.A.\:=\:(\cancel{2}*\frac{22}{\cancel{7}} *\frac{\cancel{7}}{\cancel{2}} *5)cm^{2} }

\longmapsto\rm{C.S.A.\:=\:(22*5)cm^{2} }

\longmapsto\rm{\red{C.S.A.\:=\:110cm^{2}}}} }

  • \sf{\Large{\boxed{\sf{\blue{3.Total\:surface\:area\:of\:cylinder\::}}}}}

\longmapsto\rm{T.S.A.\:=\:2\pi r(r+h)}

\longmapsto\rm{T.S.A.\:=\:[2*\frac{22}{7} *\frac{7}{2} (\frac{7}{2} +5)]cm^{2} }

\longmapsto\rm{T.S.A.\:=\:[\cancel{2}*\frac{22}{\cancel{7}} *\frac{\cancel{7}}{\cancel{2}} (\frac{7}{2} +5)]cm^{2} }

\longmapsto\rm{T.S.A.\:=\:[22*(\frac{7+10}{2} )]cm^{2} }

\longmapsto\rm{T.S.A.\:=\:(22*(\frac{17}{2} )cm^{2} }

\longmapsto\rm{T.S.A.\:=\:\cancel{\frac{374}{2} }cm^{2} }

\longmapsto\rm{\red{T.S.A.\:=\:187cm^{2}}}

Similar questions