Math, asked by meghana3609, 3 months ago

Find The curved surface Area Total surface Area vertical surface Area and volume of a cube with side 6 cm​

Answers

Answered by hansika650
0

Answer:

A=216

a Edge

6

please make me brainlist

Answered by MizzCharming
64

Step-by-step explanation:

Given: Side of the cube is 6cm.

⠀⠀⠀⠀

\begin{gathered} \dag \: \frak{ Need \: to \: find} \begin{cases} \frak{ Total \: surface \: area} \\ \\ \frak {Lateral \: Surface \: area} \\ \\ \frak{ Volume}\end {cases}\end{gathered}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

As we know that,

  • Total surface area = \sf 6 {s}^{2}
  • Lateral surface area = \sf 4 {s}^{2}4s
  • Volume =  \sf {s}^{3}

⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\bigstar\:{\underline{\sf{\pmb{According\:to\:the\:Question\::}}}}\\\\\end{gathered}\end{gathered}

Now, We can calculate TSA , LSA & volume by using the formula's given above,

⠀⠀⠀

\begin{gathered}\begin{gathered}\bigstar\:{\underline{\sf{\pmb{Total\:surface\:area\::}}}}\\\\\end{gathered}\end{gathered}

\begin{gathered} : \implies \sf{6 \times {6}^{2} } \\ \\ \\ : \implies \sf{6 \times 36} \\ \\ \\ \begin{gathered} :\implies{\boxed{\underline{ \frak{ \purple{ 216 \: {cm}^{2}}}}}}\:\bigstar \\ \\\end{gathered} \end{gathered}

⠀⠀⠀⠀

\begin{gathered}\begin{gathered}\bigstar\:{\underline{\sf{\pmb{Lateral\:surface\:area\::}}}}\\\\\end{gathered}\end{gathered}

⠀⠀⠀⠀

\begin{gathered} : \implies \sf{4 \times {6}^{2} } \\ \\ \\ : \implies \sf{4 \times 36} \\ \\ \\ \begin{gathered} :\implies{\boxed{\underline{ \frak{ \purple{ 144 \: {cm}^{2}}}}}}\:\bigstar \\ \\\end{gathered} \end{gathered}

\begin{gathered}\begin{gathered}\bigstar\:{\underline{\sf{\pmb{Volume\::}}}}\\\\\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered} : \implies \sf{{6}^{3}} \\ \\ \\ :\implies{\boxed{\underline{ \frak{ \purple{ 216 \: {cm}^{3}}}}}}\:\bigstar \\ \\\end{gathered} \end{gathered}

⠀⠀━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀

{\therefore\:{\underline{\sf{Hence,\:TSA , LSA \: and \: Volume \: are\: {\pmb{\sf{216 \: {cm}^{2}}}}, \pmb{144 \: {cm}^{2}} {\sf{and \: }} \pmb{216 \: {cm}^{3}}}}}}

Similar questions