Math, asked by meghana3609, 1 month ago

Find The curved surface Area Total surface Area vertical surface Area and volume of a cube with side 6 cm​

Answers

Answered by IamJaat
146

Correct question :

Find the curved surface area,total surface area and volume of cube whose side is 6cm.

Given :

  • Side of cube = 6cm

To find :

  • Curved surface area of cube
  • T.S.A of cube
  • Volume of cube

Formulae to remember :

  • C.S.A of cube = 4 × (side)²
  • T.S.A of cube = 6 × (side)²
  • Volume of cube = (side)³

Solution :

  • ✦ Curved surface area of cube = 4(side)²

➯ 4 × (6)²

➯ 4 × 36

➯ 144 cm²

  • ✦ T.S.A of cube = 6(side)²

➯ 6 (6)²

➯ 6 (36)

➯ 216 cm²

  • ✦ Volume of cube = side³

➯ (6)³

➯ 216 cm³

Answered by Anonymous
17

Given: Side of the cube is 6cm.

⠀⠀⠀⠀

 \dag \:  \frak{ Need \:  to \:  find} \begin{cases} \frak{ Total  \: surface \:  area} \\  \\ \frak {Lateral \:  Surface  \: area} \\ \\  \frak{ Volume}\end {cases}

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀

\star As we know that,

  • Total surface area =  \sf 6 {s}^{2}

  • Lateral surface area =  \sf 4 {s}^{2}

  • Volume =  \sf {s}^{3}

⠀⠀⠀⠀

\begin{gathered}\bigstar\:{\underline{\sf{\pmb{According\:to\:the\:Question\::}}}}\\\\\end{gathered}

Now, We can calculate TSA , LSA & volume by using the formula's given above,

⠀⠀⠀

\begin{gathered}\bigstar\:{\underline{\sf{\pmb{Total\:surface\:area\::}}}}\\\\\end{gathered}

⠀⠀⠀⠀

 :  \implies \sf{6 \times  {6}^{2} } \\  \\  \\  :  \implies \sf{6 \times 36} \\  \\  \\ \begin{gathered} :\implies{\boxed{\underline{ \frak{ \purple{ 216 \: {cm}^{2}}}}}}\:\bigstar \\ \\\end{gathered}

⠀⠀⠀⠀

\begin{gathered}\bigstar\:{\underline{\sf{\pmb{Lateral\:surface\:area\::}}}}\\\\\end{gathered}

⠀⠀⠀⠀

 :  \implies \sf{4 \times  {6}^{2} } \\  \\  \\  :  \implies \sf{4 \times 36} \\  \\  \\ \begin{gathered} :\implies{\boxed{\underline{ \frak{ \purple{ 144 \: {cm}^{2}}}}}}\:\bigstar \\ \\\end{gathered}

⠀⠀⠀⠀

\begin{gathered}\bigstar\:{\underline{\sf{\pmb{Volume\::}}}}\\\\\end{gathered}

⠀⠀⠀⠀

\begin{gathered}  :  \implies \sf{{6}^{3}} \\  \\  \\  :\implies{\boxed{\underline{ \frak{ \purple{ 216 \: {cm}^{3}}}}}}\:\bigstar \\ \\\end{gathered}

⠀⠀━━━━━━━━━━━━━━━━━━━━⠀⠀

⠀⠀⠀⠀

{\therefore\:{\underline{\sf{Hence,\:TSA , LSA  \: and  \: Volume  \: are\: {\pmb{\sf{216 \: {cm}^{2}}}},  \pmb{144 \: {cm}^{2}} {\sf{and \: }}  \pmb{216 \: {cm}^{3}}}}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━⠀⠀

\begin{gathered}\qquad\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}} \\\end{gathered}

  • Curved surface area of cube = 4a²

  • Total surface area of cube = 6a²

  • Volume of cube = a³

  • Curved surface area of cuboid = 2(l + b)h

  • Total surface area cuboid = 2(lb + bh + hl)

  • Volume of cuboid = l × b × h
Similar questions