Math, asked by AntraD854, 8 months ago

Find the daimeter of circular cylinder if volume =44cm^3 and height 3.5 cm

Answers

Answered by Asterinn
4

Given :

  • volume of cylinder =44cm³
  • height = 3.5 cm

To find :

  • diameter of circular cylinder

Formula Used :

v = \pi {r}^{2} h

d = 2r

where :-

  • v = volume of cylinder
  • r = radius
  • h = height of cylinder
  • d = diameter of base

Solution :

volume of cylinder =44cm³

height = 3.5 cm

\implies \: v = \pi {r}^{2} h

put :-

  • v = volume
  • r = radius
  • h = height
  • π = 22/7

\implies \: 44 =  \dfrac{22}{7} \times   {r}^{2}  \times 3.5

\implies \: 44 =  \dfrac{22}{7} \times   {r}^{2}  \times  \dfrac{35}{10}

\implies \: 44 \times\dfrac{7}{22}   \times  \dfrac{10}{35} =     {r}^{2}

\implies \: 2\times\dfrac{1}{1}   \times  \dfrac{2}{1} =     {r}^{2}

\implies \: 2\times2 =     {r}^{2}

\implies \: 2cm=     {r}

We know :-

d = 2r

put r = 2 cm

d = 2\times2

d = 4\:cm

Answer :

diameter = 4 cm

________________

\large\bf\red{Additional-Information}

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = (4/3)πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

_________________

Similar questions