Math, asked by 20001004016anmol, 8 days ago

find the deflection of a vibrating string of unit length having fixed ends with initial velocity zero and intial deflection f(x)=2(sin(3x)-sin(2x))

Answers

Answered by ananyasrisritha
0

Step-by-step explanation:

Let w(x,t)w(x,t) be the function describing deflection of the string. The function satisfies wave equation

w_{tt}=a^2w_{xx}w

tt

=a

2

w

xx

and from the condition of the question we have

w(0,t)=w(1,t)=0w(0,t)=w(1,t)=0

as the ends are fixed and initial conditions are

w(x,0)=0w(x,0)=0

w_t(x,0)=u(x)w

t

(x,0)=u(x)

In order to solve the PDE we’ll use separation of variables, so w(x,t)=X(x)T(t)w(x,t)=X(x)T(t). If we put this in the equation, we’ll obtain \frac{T''}{a^2T}=\frac{X''}{X}=-\lambda

a

2

T

T

′′

=

X

X

′′

=−λ. So we have Sturm-Liouville problem \begin{cases} X''+\lambda X=0\\ X(0)=X(1)=0 \end{cases}{

X

′′

+λX=0

X(0)=X(1)=0

. The problem has infinitely many non-trivial solutions X_n=\sin(\pi n x)X

n

=sin(πnx) and eigenvalues \lambda_n=\pi^2n^2λ

n

2

n

2

. Then T_n''+ \lambda_n a^2 T_n=0T

n

′′

n

a

2

T

n

=0 hence T_n=C_{1n}\cos(\pi n at)+C_{2n}\sin(\pi n a t)T

n

=C

1n

cos(πnat)+C

2n

sin(πnat) where C_{1n}, C_{2n}C

1n

,C

2n

are arbitrary constants. So

w(x,t)=\sum_{n=1}^{\infty}T_n(t)X_n(x)=\sum_{n=1}^{\infty}(C_{1n}\cos(\pi n at)+C_{2n}\sin(\pi n a t))\sin(\pi n x)w(x,t)=∑

n=1

T

n

(t)X

n

(x)=∑

n=1

(C

1n

cos(πnat)+C

2n

sin(πnat))sin(πnx)

In order to find C_{1n}, C_{2n}C

1n

,C

2n

we’ll use initial conditions. w(x,0)=\sum_{n=1}^{\infty}C_{1n}\sin(\pi n x)=0w(x,0)=∑

n=1

C

1n

sin(πnx)=0, so all C_{1n}=0C

1n

=0

w_t(x,0)=\sum_{n=1}^{\infty}C_{2n}\pi n a\sin(\pi n x)=u(x)w

t

(x,0)=∑

n=1

C

2n

πnasin(πnx)=u(x)

let’s expand u(x)u(x) into Fourier sine series on interval 0<x<10<x<1.

u(x)=\sum_{n=1}^{\infty}b_n \sin(\pi n x)u(x)=∑

n=1

b

n

sin(πnx)

b_n=2 \int_0^{1} u(x) \sin(\pi n x)\, dx=\frac{4\sin(\frac{\pi n}{2})}{\pi^2 n^2}b

n

=2∫

0

1

u(x)sin(πnx)dx=

π

2

n

2

4sin(

2

πn

)

So

u(x)=\sum_{n=1}^{\infty}\frac{4\sin(\frac{\pi n}{2})}{\pi^2 n^2} \sin(\pi n x)u(x)=∑

n=1

π

2

n

2

4sin(

2

πn

)

sin(πnx)

and equating coefficients in the sums we obtain C_{2n}=\frac{4\sin(\frac{\pi n}{2})}{\pi^3n^3a}C

2n

=

π

3

n

3

a

4sin(

2

πn

)

. So

w(x,t)=\sum_{n=1}^{\infty}\frac{4\sin(\frac{\pi n}{2})}{\pi^3n^3a}\sin(\pi n a t)\sin(\pi n x)w(x,t)=∑

n=1

π

3

n

3

a

4sin(

2

πn

)

sin(πnat)sin(πnx)

or it can be rewritten as

w(x,t)=\sum_{n=1}^{\infty}(-1)^{n+1}\frac{4}{\pi^3(2n-1)^3a}\sin(\pi (2n-1) a t)\sin(\pi (2n-1) x)w(x,t)=∑

n=1

(−1)

n+1

π

3

(2n−1)

3

a

4

sin(π(2n−1)at)sin(π(2n−1)x)

Similar questions