Math, asked by parbati33, 11 months ago

find the degree measure of angle subtended at the center of a circle of radius 100 CM by an arc of length 22cm​

Answers

Answered by Rohitpoul
1

Answer:

12.6

Step-by-step explanation:

angle in radiant = length of arc ÷radius

L÷R=22/100 rad

converting into degree

22/100×180/π

12.6

Answered by Anonymous
5

Step-by-step explanation:

\bullet\:\:\textsf{Radius = (r) = \textbf{100 cm}} \\

\bullet\:\:\textsf{Arc Length = (l) = \textbf{22 cm}} \\   \\

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\qquad \tiny  \dag  \: \underline {\bf Formula  \: used :} \\

\bigstar \:  \:  \sf l = r  \: \theta  \:  \:  \bigstar \\  \\

\qquad \tiny  \dag  \: \underline {\bf Putting \: the \: value :} \\

: \implies \sf 22 = 100 \times \theta \\  \\

: \implies  \underline{ \boxed{\sf \theta =   \dfrac{22}{100}  \: radians}} \\

____________________

\qquad \tiny  \dag  \: \purple{\underline {\bf We \:  need \:  to  \: find \:  \theta  \: into  \: degree:}} \\

\dashrightarrow\:\:\sf Radian \:  measure = \dfrac{\pi}{180} \times Degree  \: measure \\  \\ </p><p>

\dashrightarrow\:\:\sf  \dfrac{22}{100}  = \dfrac{22}{180} \times   \dfrac{1}{7}  \times Degree  \: measure \\  \\ </p><p>

\dashrightarrow\:\:\sf  \dfrac{22}{100}   \times  \dfrac{180}{22} \times   \dfrac{7}{1}   =  Degree  \: measure \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  \frac{126}{10} \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  12.6^{\circ} \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  12^{ \circ} + 6^{\circ} \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  12^{\circ}  + (0.6 \times 60) \\  \\

\dashrightarrow\:\: \underline{ \boxed{ \sf Degree  \: measure  =  12^{\circ} \:  36'}}

Similar questions