Math, asked by kotipallisrikx58, 6 months ago

Find the degree measure of the angle subtended at the center of a circle of radius 100 cm by an arc of length 22 cm. (Useπ= 22/7 )//

Answers

Answered by αηυяαg
432

 \huge{\bf{\underline{\red{Given:}}}}

Radius of Circle = 100 cm

Length of Arc = 22 cm

 \huge{\bf{\underline{\red{To\:Find:}}}}

Degree measure of the angle subtended at the centre of a circle.

 \huge{\bf{\underline{\red{Formula\:Used:}}}}

{\bf{\boxed{r=\dfrac{l}{θ}}}}

 \huge{\bf{\underline{\red{Solution:}}}}

Using Formula,

\sf :\implies\:r=\dfrac{l}{θ}

Putting Values,

\sf :\implies\:100=\dfrac{22}{θ}

\sf :\implies\:θ=\dfrac{22}{100}

\sf :\implies\:θ=\dfrac{11}{50}\: radians

Now,

\sf :\implies\:θ=(\dfrac{11}{50}\times \dfrac{180}{\pi})°

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{18\times 7}{22})°

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{9\times 7}{11})°

\sf :\implies\:θ=(\dfrac{693}{55})°

\sf :\implies\:θ=(12\dfrac{33}{55})°

\sf :\implies\:θ=12°(\dfrac{3}{5}\times 60)'

\sf :\implies\:θ=12°36'

Hence, The Degree measure of the angle subtended at the centre of a circle is 12°36'.

━━━━━━━━━━━━━━━━━━

Answered by Anonymous
0

Answer:

Concept :- use formula

∅ = L/R

Where , ∅ is the angle subtended at the centre of circle.

L is the arc length of the circle.

R is the radius of the circle.

and then use the concept of

C/π = D/180° for radian to degree conversion.

Solution:-

L = 22 cm

R = 100 cm

So, ∅ = 22/100 radian

Now,

D = ( 22/100)×180°/π

= ( 22×180×7/100×22)°

= (63/5)°

= 12° + (3/5)×60'

= 12°36'

Step-by-step explanation:

thanks.

Similar questions