Math, asked by kotipallisrikx58, 4 months ago

Find the degree measure of the angle subtended at the center of a circle of radius 100 cm by an arc of length 22 cm. (Useπ= 22/7 )////

Answers

Answered by EnchantedGirl
21

\bigstar \underline{\underline{\sf \bf Given:-}}\\\\

  • Radius=100cm
  • Length = 22cm

\\

\bigstar \underline{\underline{\sf \bf To\ Find:-}}\\\\

  • Degree measure of the angle subtented at the centre of the circle.

\\

\bigstar \underline{\underline{\sf \bf Solution:-}}\\\\

We know :

\mapsto \boxed{\boxed{\sf l=r \ \theta}}

Where,

=> l= length

=> r = radius

=>θ=angle subtended

\\

Now,

:\implies \sf l=r\ \theta \\\\:\implies \sf \theta =\frac{l}{r} \\\\:\implies \bold{ \theta=\frac{22}{100} radians.}\\\\

We should now convert radians to degrees ,

\mapsto \boxed{\boxed{\sf Radian\ measure=\frac{\pi}{180}\times degree\ measure   }}\\\\

:\implies \sf \frac{22}{100} =\frac{\pi}{180} \times degree\ measure \\\\(\pi = 22/7)\\\\:\implies \sf Degree\ measure = \frac{22}{100} \times \frac{180}{22} \times 7\\\\:\implies \sf Degree\ measure=\frac{126}{10} \\\\\\:\implies \sf 12^o +\frac{6^o}{10} \\\\\bold{(1^o=60')}\\\\:\implies 12^o +( \frac{6\times 60}{10})'\\\\:\implies 12^o +(\frac{360}{10} )'\\\\:\implies \sf 12^o + 36'\\\\:\implies \boxed{\boxed{\bold {\sf \theta= 12^o 36'.}}}\\\\\\

-------------------------------

HOPE IT HELPS !

Answered by Anonymous
0

\bigstar \underline{\underline{\sf \bf Given:-}}\\\\

Radius=100cm

Length = 22cm

\\

\bigstar \underline{\underline{\sf \bf To\ Find:-}}\\\\

Degree measure of the angle subtented at the centre of the circle.

\\

\bigstar \underline{\underline{\sf \bf Solution:-}}\\\\

We know :

\mapsto \boxed{\boxed{\sf l=r \ \theta}}

Where,

=> l= length

=> r = radius

=>θ=angle subtended

\\

Now,

:\implies \sf l=r\ \theta \\\\:\implies \sf \theta =\frac{l}{r} \\\\:\implies \bold{ \theta=\frac{22}{100} radians.}\\\\

We should now convert radians to degrees ,

\mapsto \boxed{\boxed{\sf Radian\ measure=\frac{\pi}{180}\times degree\ measure   }}\\\\

:\implies \sf \frac{22}{100} =\frac{\pi}{180} \times degree\ measure \\\\(\pi = 22/7)\\\\:\implies \sf Degree\ measure = \frac{22}{100} \times \frac{180}{22} \times 7\\\\:\implies \sf Degree\ measure=\frac{126}{10} \\\\\\:\implies \sf 12^o +\frac{6^o}{10} \\\\\bold{(1^o=60')}\\\\:\implies 12^o +( \frac{6\times 60}{10})'\\\\:\implies 12^o +(\frac{360}{10} )'\\\\:\implies \sf 12^o + 36'\\\\:\implies \boxed{\boxed{\bold {\sf \theta= 12^o 36'.}}}\\\\\\

-------------------------------

HOPE IT HELPS !

Similar questions