Math, asked by kotipallisricc68, 6 months ago

Find the degree measure of the angle subtended at the center of a circle of radius 100 cm by an arc of length 22 cm. (Useπ= 22/7 )////////

Answers

Answered by tanyakumari110041
0

Answer:

We know that in a circle of radius r unit, if an arc of length l unit

subtends an angle θ radian at the centre, then θ=rl​

Therefore, for r=100 cm, l=22 cm, we have

θ=22/100 radian =180/ π ​× 22/100 degree=

180*7*22/22*100​ degree

=126/10 degree=​12 3/5 degree = 12∘36′ , [∵1∘=60′]

Step-by-step explanation:

Answered by αηυяαg
456

 \huge{\bf{\underline{\red{Given:}}}}

Radius of Circle = 100 cm

Length of Arc = 22 cm

 \huge{\bf{\underline{\red{To\:Find:}}}}

Degree measure of the angle subtended at the centre of a circle.

 \huge{\bf{\underline{\red{Formula\:Used:}}}}

{\bf{\boxed{r=\dfrac{l}{θ}}}}

 \huge{\bf{\underline{\red{Solution:}}}}

Using Formula,

\sf :\implies\:r=\dfrac{l}{θ}

Putting Values,

\sf :\implies\:100=\dfrac{22}{θ}

\sf :\implies\:θ=\dfrac{22}{100}

\sf :\implies\:θ=\dfrac{11}{50}\: radians

Now,

\sf :\implies\:θ=(\dfrac{11}{50}\times \dfrac{180}{\pi})°

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{18\times 7}{22})°

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{9\times 7}{11})°

\sf :\implies\:θ=(\dfrac{693}{55})°

\sf :\implies\:θ=(12\dfrac{33}{55})°

\sf :\implies\:θ=12°(\dfrac{3}{5}\times 60)'

\sf :\implies\:θ=12°36'

Hence, The Degree measure of the angle subtended at the centre of a circle is 12°36'.

━━━━━━━━━━━━━━━━━━

Similar questions