Math, asked by dheerajkumar2697, 5 months ago


Find the degree measure of the angle subtended at the centre of a circle of radius 100 cm by an arc of
22
length 22 cm (Use =
7
22​

Answers

Answered by Sriramgangster
14

\huge\pink{ \mid{ \underline{ \overline{ \tt Answer :- }} \mid}}

12°36'

Hope it helps

\huge \green{ \mid{ \underline{ \overline{ \tt Brainliest :- }} \mid}}

Step-by-step explanation:

L = 22 cm

R = 100 cm

So, ∅ = 22/100 radian

Now,

D = ( 22/100)×180°/π

= ( 22×180×7/100×22)°

= (63/5)°

= 12° + (3/5)×60'

= 12°36'

Answered by αηυяαg
55

 \huge{\bf{\underline{\red{Given:}}}}

Radius of Circle = 100 cm

Length of Arc = 22 cm

 \huge{\bf{\underline{\red{To\:Find:}}}}

Degree measure of the angle subtended at the centre of a circle.

 \huge{\bf{\underline{\red{Formula\:Used:}}}}

{\bf{\boxed{r=\dfrac{l}{θ}}}}

 \huge{\bf{\underline{\red{Solution:}}}}

Using Formula,

\sf :\implies\:r=\dfrac{l}{θ}

Putting Values,

\sf :\implies\:100=\dfrac{22}{θ}

\sf :\implies\:θ=\dfrac{22}{100}

\sf :\implies\:θ=\dfrac{11}{50}\: radians

Now,

\sf :\implies\:θ=(\dfrac{11}{50}\times \dfrac{180}{\pi})°

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{18\times 7}{22})°

\sf :\implies\:θ=(\dfrac{11}{5}\times \dfrac{9\times 7}{11})°

\sf :\implies\:θ=(\dfrac{693}{55})°

\sf :\implies\:θ=(12\dfrac{33}{55})°

\sf :\implies\:θ=12°(\dfrac{3}{5}\times 60)'

\sf :\implies\:θ=12°36'

Hence, The Degree measure of the angle subtended at the centre of a circle is 12°36'.

━━━━━━━━━━━━━━━━━━

Similar questions