Math, asked by suyqsj3591, 1 year ago

Find the degree measures of the angle subtended at the centre of a circle of radius 100cm by an arc of length 22cm (use π=227)

Answers

Answered by hitjoshi1996
1
θ=lrθ=lrθθ=angle subtended by arcll=length of the arcrr=radius of the circle1 radian=(180π)(180π)Given :l=22l=22cm,r=100cmθ=lrθ=lr2210022100θ=0.22θ=0.22radiansWe know that1 radian=(180π)(180π)0.22 radian=0.22×180∘π0.22×180∘π⇒0.22×180∘22/7⇒0.22×180∘22/70.22×180×7220.22×180×7221261012610=12∘36′=12∘36′Thus the degree measures of the angle subtended at the centre of the circle is 12∘36′12∘36′Hence (B) is the correct answer.
Answered by Anonymous
5

Step-by-step explanation:

\bullet\:\:\textsf{Radius = (r) = \textbf{100 cm}} \\

\bullet\:\:\textsf{Arc Length = (l) = \textbf{22 cm}} \\   \\

\underline{\boldsymbol{According\: to \:the\: Question\:now :}}

\qquad \tiny  \dag  \: \underline {\bf Formula  \: used :} \\

\bigstar \:  \:  \sf l = r  \: \theta  \:  \:  \bigstar \\  \\

\qquad \tiny  \dag  \: \underline {\bf Putting \: the \: value :} \\

: \implies \sf 22 = 100 \times \theta \\  \\

: \implies  \underline{ \boxed{\sf \theta =   \dfrac{22}{100}  \: radians}} \\

____________________

\qquad \tiny  \dag  \: \purple{\underline {\bf We \:  need \:  to  \: find \:  \theta  \: into  \: degree:}} \\

\dashrightarrow\:\:\sf Radian \:  measure = \dfrac{\pi}{180} \times Degree  \: measure \\  \\ </p><p>

\dashrightarrow\:\:\sf  \dfrac{22}{100}  = \dfrac{22}{180} \times   \dfrac{1}{7}  \times Degree  \: measure \\  \\ </p><p>

\dashrightarrow\:\:\sf  \dfrac{22}{100}   \times  \dfrac{180}{22} \times   \dfrac{7}{1}   =  Degree  \: measure \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  \frac{126}{10} \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  12.6^{\circ} \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  12^{ \circ} + 6^{\circ} \\  \\

\dashrightarrow\:\: \sf Degree  \: measure  =  12^{\circ}  + (0.6 \times 60) \\  \\

\dashrightarrow\:\: \underline{ \boxed{ \sf Degree  \: measure  =  12^{\circ} \:  36'}}

Similar questions