Math, asked by Anonymous, 7 hours ago

Find the derative of (px + q) (r/x + s)

No spam!! ​

Answers

Answered by rudrarajie
1

I am a noooooooob bruuuuuuh

Attachments:
Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:(px + q)\bigg(\dfrac{r}{x} + s \bigg)

Let assume that

\rm :\longmapsto\:y \:  =  \: (px + q)\bigg(\dfrac{r}{x} + s \bigg)

\rm :\longmapsto\:y \:  =  \: pr + psx + \dfrac{qr}{x}  + qs

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y \:  =\dfrac{d}{dx}\bigg[  \: pr + psx + \dfrac{qr}{x}  + qs\bigg]

\rm :\longmapsto\:\dfrac{dy}{dx} \:  =  \: \dfrac{d}{dx}pr + ps\dfrac{d}{dx}x + qr\dfrac{d}{dx} {x}^{ - 1} + \dfrac{d}{dx}qs

We know,

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}k = 0}}

and

\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} {x}^{n}  =  {nx}^{n - 1} }}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dx} = 0 + ps(1) - qr {x}^{ - 1 - 1} + 0

\rm :\longmapsto\:\dfrac{dy}{dx} = ps - qr {x}^{ - 2}

\rm :\longmapsto\:\dfrac{dy}{dx} = ps - \dfrac{qr}{ {x}^{2} }

Hence,

\sf\implies\:\boxed{\tt{  \: \dfrac{dy}{dx} = ps - \dfrac{qr}{ {x}^{2} }  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

EXPLORE MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions