Math, asked by Oota, 3 months ago

Find the deravation of x + 1 ÷ x- 1 using first principle​

Answers

Answered by BrainlyTwinklingstar
8

Question

Find the deravation of \sf \dfrac{x + 1}{x - 1} using first principle.

Answer

 \sf f(x) =  \dfrac{x + 1}{x - 1}

Using first principle that is,

 \displaystyle \sf f(x) =  \lim_{h \to 0} \dfrac{f(x +h) - f(x)}{h} \\

 \displaystyle \sf f(x) =  \lim_{h \to 0} \dfrac{ \dfrac{(x + h + 1)}{(x + h  - 1)} -  \bigg( \dfrac{x + 1}{x - 1} \bigg)  }{h}\\

 \displaystyle \sf f(x) =  \lim_{h \to 0} \dfrac{(x + h + 1)(x - 1) - (x + 1)(x + h - 1)}{h(x + h - 1)(x - 1)}\\

 \displaystyle \sf f(x) =  \lim_{h \to 0} \dfrac{ {x}^{2} + hx + x - x - h - 1 - hx + x - x - h + 1 }{h(x + h - 1)(x - 1)}\\

 \displaystyle \sf f(x) =  \lim_{h \to 0} \dfrac{ - 2h}{h(x + h - 1)(x - 1)} \\

 \displaystyle \sf f(x) =  \lim_{h \to 0} \dfrac{ - 2}{(x + h - 1)(x - 1)}  \\

 \displaystyle \sf f(x) =  \dfrac{ - 2}{(x - 1)^{2} }

Similar questions